Knowledge Center Catalog

Local cover image
Local cover image

Closing the gaps in experimental and observational crop response estimates : a Bayesian approach

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Oxford (United Kingdom) : Oxford University Press, 2024.ISSN:
  • 2633-9048 (Online)
Subject(s): Online resources: In: Q Open v. 4, no. 2, art. qoae017Summary: A stylized fact of African agriculture is that crop responses to inorganic fertilizer application derived from experimental studies are often substantially greater than those from observational studies (e.g., surveys and administrative data). Recent debates on relative costs and benefits of expensive farm input subsidy programs in Africa, have raised the importance of reconciling these estimates. Beyond mean response differences, this paper argues for including parameter uncertainty and heterogeneity arising from variations in soil types, environmental conditions, and management practices. We use a Bayesian approach that combines information from experimental and observational data to model uncertainty and heterogeneity in crop yield responses. Using nationally representative experimental, survey, and administrative datasets from Malawi, we find that: (1) crop responses are low in observational data, (2) there are large spatial heterogeneities, and (3) based on sensitivity analysis, ignoring parameter uncertainty and spatial heterogeneity in crop responses can lead to questionable policy prescriptions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

A stylized fact of African agriculture is that crop responses to inorganic fertilizer application derived from experimental studies are often substantially greater than those from observational studies (e.g., surveys and administrative data). Recent debates on relative costs and benefits of expensive farm input subsidy programs in Africa, have raised the importance of reconciling these estimates. Beyond mean response differences, this paper argues for including parameter uncertainty and heterogeneity arising from variations in soil types, environmental conditions, and management practices. We use a Bayesian approach that combines information from experimental and observational data to model uncertainty and heterogeneity in crop yield responses. Using nationally representative experimental, survey, and administrative datasets from Malawi, we find that: (1) crop responses are low in observational data, (2) there are large spatial heterogeneities, and (3) based on sensitivity analysis, ignoring parameter uncertainty and spatial heterogeneity in crop responses can lead to questionable policy prescriptions.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org