Knowledge Center Catalog

Local cover image
Local cover image

Genomic prediction of synthetic hexaploid wheat upon tetraploid durum and diploid Aegilops parental pools

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: John Wiley and Sons Inc, 2024. United States of America :ISSN:
  • 1940-3372 (Online)
Subject(s): Online resources: In: The Plant Genome v. 17, no. 2, e20464Summary: Bread wheat (Triticum aestivum L.) is a globally important food crop, which was domesticated about 8–10,000 years ago. Bread wheat is an allopolyploid, and it evolved from two hybridization events of three species. To widen the genetic base in breeding, bread wheat has been re-synthesized by crossing durum wheat (Triticum turgidum ssp. durum) and goat grass (Aegilops tauschii Coss), leading to so-called synthetic hexaploid wheat (SHW). We applied the quantitative genetics tools of “hybrid prediction”—originally developed for the prediction of wheat hybrids generated from different heterotic groups — to a situation of allopolyploidization. Our use-case predicts the phenotypes of SHW for three quantitatively inherited global wheat diseases, namely tan spot (TS), septoria nodorum blotch (SNB), and spot blotch (SB). Our results revealed prediction abilities comparable to studies in ‘traditional’ elite or hybrid wheat. Prediction abilities were highest using a marker model and performing random cross-validation, predicting the performance of untested SHW (0.483 for SB to 0.730 for TS). When testing parents not necessarily used in SHW, combination prediction abilities were slightly lower (0.378 for SB to 0.718 for TS), yet still promising. Despite the limited phenotypic data, our results provide a general example for predictive models targeting an allopolyploidization event and a method that can guide the use of genetic resources available in gene banks.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Early View

Bread wheat (Triticum aestivum L.) is a globally important food crop, which was domesticated about 8–10,000 years ago. Bread wheat is an allopolyploid, and it evolved from two hybridization events of three species. To widen the genetic base in breeding, bread wheat has been re-synthesized by crossing durum wheat (Triticum turgidum ssp. durum) and goat grass (Aegilops tauschii Coss), leading to so-called synthetic hexaploid wheat (SHW). We applied the quantitative genetics tools of “hybrid prediction”—originally developed for the prediction of wheat hybrids generated from different heterotic groups — to a situation of allopolyploidization. Our use-case predicts the phenotypes of SHW for three quantitatively inherited global wheat diseases, namely tan spot (TS), septoria nodorum blotch (SNB), and spot blotch (SB). Our results revealed prediction abilities comparable to studies in ‘traditional’ elite or hybrid wheat. Prediction abilities were highest using a marker model and performing random cross-validation, predicting the performance of untested SHW (0.483 for SB to 0.730 for TS). When testing parents not necessarily used in SHW, combination prediction abilities were slightly lower (0.378 for SB to 0.718 for TS), yet still promising. Despite the limited phenotypic data, our results provide a general example for predictive models targeting an allopolyploidization event and a method that can guide the use of genetic resources available in gene banks.

Text in English

Martini, J.W.R. : No CIMMYT Affiliation

Lozano-Ramirez, N. : Not in IRS staff list but CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org