Knowledge Center Catalog

Local cover image
Local cover image

Multi-locus genome wide association mapping for yield and its contributing traits in hexaploid wheat under different water regimes

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Nature Publishing Group, 2019. London (United Kingdom) :ISSN:
  • 2045-2322
Subject(s): Online resources: In: Scientific Reports v. 9, no. 1, art. 19486Summary: Multi-locus genome wide association study was undertaken using a set of 320 diverse spring wheat accessions, which were each genotyped for 9,626 SNPs. The association panel was grown in replicated trials in four environments [two each in irrigated (IR) and rainfed (RF) environments], and phenotypic data were recorded for five traits including days to heading, days to maturity, plant height, thousand grain weight and grain yield. Forty-six significant marker-trait associations (MTAs) were identified for five traits. These included 20 MTAs in IR and 19 MTAs in RF environments; seven additional MTAs were common to both the environments. Five of these MTAs were co-localized with previously known QTL/MTAs and the remaining MTAs were novel and add to the existing knowledge. Three desirable haplotypes for agronomic traits, one for improvement in RF environment and two for improvement in IR environment were identified. Eighteen (18) promising candidate genes (CGs) involved in seven different biological activities were also identified. The expression profiles of four (Trehalose-6-Phosphate, APETALA2/Ethylene-responsive factor, DNA-binding One Zinc Finger and Gibberellin-dioxygenases) of the 18 genes showed that they were induced by drought stress in the wheat seedlings. The MTAs, haplotypes and CG-based markers may be used in marker-assisted breeding for drought tolerance in wheat.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Multi-locus genome wide association study was undertaken using a set of 320 diverse spring wheat accessions, which were each genotyped for 9,626 SNPs. The association panel was grown in replicated trials in four environments [two each in irrigated (IR) and rainfed (RF) environments], and phenotypic data were recorded for five traits including days to heading, days to maturity, plant height, thousand grain weight and grain yield. Forty-six significant marker-trait associations (MTAs) were identified for five traits. These included 20 MTAs in IR and 19 MTAs in RF environments; seven additional MTAs were common to both the environments. Five of these MTAs were co-localized with previously known QTL/MTAs and the remaining MTAs were novel and add to the existing knowledge. Three desirable haplotypes for agronomic traits, one for improvement in RF environment and two for improvement in IR environment were identified. Eighteen (18) promising candidate genes (CGs) involved in seven different biological activities were also identified. The expression profiles of four (Trehalose-6-Phosphate, APETALA2/Ethylene-responsive factor, DNA-binding One Zinc Finger and Gibberellin-dioxygenases) of the 18 genes showed that they were induced by drought stress in the wheat seedlings. The MTAs, haplotypes and CG-based markers may be used in marker-assisted breeding for drought tolerance in wheat.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org