Knowledge Center Catalog

Local cover image
Local cover image

Sparse multi-trait genomic prediction under balanced incomplete block design

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Wiley, 2023. USA : ISSN:
  • 1940-3372 (Online)
Subject(s): Online resources: In: Plant Genome v. 16, no. 2, e20305Summary: Sparse testing is essential to increase the efficiency of the genomic selection methodology, as the same efficiency (in this case prediction power) can be obtained while using less genotypes evaluated in the fields. For this reason, it is important to evaluate the existing methods for performing the allocation of lines to environments. With this goal, four methods (M1–M4) to allocate lines to environments were evaluated under the context of a multi-trait genomic prediction problem: M1 denotes the allocation of a fraction (subset) of lines in all locations, M2 denotes the allocation of a fraction of lines with some shared lines in locations but not arranged based on the balanced incomplete block design (BIBD) principle, M3 denotes the random allocation of a subset of lines to locations, and M4 denotes the allocation of a subset of lines to locations using the BIBD principle. The evaluation was done using seven real multi-environment data sets common in plant breeding programs. We found that the best method was M4 and the worst was M1, while no important differences were found between M3 and M4. We concluded that M4 and M3 are efficient in the context of sparse testing for multi-trait prediction.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Sparse testing is essential to increase the efficiency of the genomic selection methodology, as the same efficiency (in this case prediction power) can be obtained while using less genotypes evaluated in the fields. For this reason, it is important to evaluate the existing methods for performing the allocation of lines to environments. With this goal, four methods (M1–M4) to allocate lines to environments were evaluated under the context of a multi-trait genomic prediction problem: M1 denotes the allocation of a fraction (subset) of lines in all locations, M2 denotes the allocation of a fraction of lines with some shared lines in locations but not arranged based on the balanced incomplete block design (BIBD) principle, M3 denotes the random allocation of a subset of lines to locations, and M4 denotes the allocation of a subset of lines to locations using the BIBD principle. The evaluation was done using seven real multi-environment data sets common in plant breeding programs. We found that the best method was M4 and the worst was M1, while no important differences were found between M3 and M4. We concluded that M4 and M3 are efficient in the context of sparse testing for multi-trait prediction.

Text in English

Montesinos-Lopez, O.A. : No CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org