Knowledge Center Catalog

Local cover image
Local cover image

Chapter 2. Advances in breeding for abiotic stress tolerance in wheat

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Cham (Switzerland) : Springer, 2021.ISBN:
  • 978-3-030-75874-5 (Hardcover)
  • 978-3-030-75877-6 (Softcover)
  • 978-3-030-75875-2 (eBook)
Subject(s): In: Genomic Designing for Abiotic Stress Resistant Cereal Crops p. 71-103Summary: Wheat is a key economically important cereal crop that is consumed globally. While the grain yield increase is steady at around 1%, it is not enough to meet the growing global demands of the next decades. One the major factor that affects wheat production is the uncertainty in climatic patterns. High temperature, drought, frost, and salinity are some of the abiotic stresses known to affect wheat production significantly. Developing wheat varieties with stable and high grain yield is the crucial for sustainable wheat production. Though, diversity for tolerance to abiotic stress exists within the wheat gene pools and elite germplasms, there is a need to rapidly introgress and breed for stress adapted lines. Optimization of the breeding process, through use of effective screening technologies, faster generation advance, and recycling of parents could impact the varietal development process significantly. The advances in genomic technologies, such as better and cheaper molecular markers and improved prediction models for genomic selection could further contribute to breeding for stress tolerant germplasm. Opportunities exists to increase the grain yield trends under abiotic stresses, which need to be effectively and efficiently utilized.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Book part CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Wheat is a key economically important cereal crop that is consumed globally. While the grain yield increase is steady at around 1%, it is not enough to meet the growing global demands of the next decades. One the major factor that affects wheat production is the uncertainty in climatic patterns. High temperature, drought, frost, and salinity are some of the abiotic stresses known to affect wheat production significantly. Developing wheat varieties with stable and high grain yield is the crucial for sustainable wheat production. Though, diversity for tolerance to abiotic stress exists within the wheat gene pools and elite germplasms, there is a need to rapidly introgress and breed for stress adapted lines. Optimization of the breeding process, through use of effective screening technologies, faster generation advance, and recycling of parents could impact the varietal development process significantly. The advances in genomic technologies, such as better and cheaper molecular markers and improved prediction models for genomic selection could further contribute to breeding for stress tolerant germplasm. Opportunities exists to increase the grain yield trends under abiotic stresses, which need to be effectively and efficiently utilized.

Wheat CRP FP2 - Novel diversity and tools adapt to climate change and resource constraints

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org