Diversity and adaptation of currently grown wheat landraces and modern germplasm in Afghanistan, Iran, and Turkey
Material type: ArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2021.ISSN:- 2673-7655 (Online)
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | Available |
Peer review
Open Access
Collection of wheat landraces (WLR) was conducted in Afghanistan, Iran, and Turkey in 2010–2014. A representative subset of this collection was used in the current study and included 45 bread wheat landraces from Turkey, 19 from Iran, and 20 from Afghanistan. This material was supplemented by 73 modern cultivars and breeding lines adapted to semiarid conditions and irrigated conditions. Overall, 157 genotypes were tested in Turkey in 2018 and 2019 and in Afghanistan and Iran in 2019 under rainfed conditions to compare performance of WLR and modern material. The germplasm was genotyped using a high density Illumina Infinium 25K wheat SNP array and KASP markers for agronomic traits. The average grain yield ranged between 2.2 and 4.0 t/ha depending on the site and year. Three groups of landraces demonstrated similar average grain yield, though Afghanistan material was slightly higher yielding not only in Afghanistan but also in Turkey. Modern material outyielded the landraces in two environments out of four. The highest yielding landraces were competitive with the best modern germplasm. Frequency of gene Sus2-2B affecting 1000 kernel weight was 64% in WLR and only 3% in modern material. Presence of positive allele of Sus2-2B increased 1000 kernel weight by nearly 4%. Breeding strategy to improved landraces and modern cultivars is discussed.
Wheat CRP FP1 - Maximizing value for money, social inclusivity through prioritizing WHEAT R4D investments FP2 - Novel diversity and tools adapt to climate change and resource constraints FP3 - Global partnership to accelerate genetic gain in farmers field
Text in English
Rasheed, A. : No CIMMYT Affiliation