Knowledge Center Catalog

Local cover image
Local cover image

Prediction of count phenotypes using high-resolution images and genomic data

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Bethesda, MD (USA) : Genetics Society of America, 2021.ISSN:
  • 2160-1836 (Online)
Subject(s): Online resources: In: G3: Genes, Genomes, Genetics v. 11, no. 2, art. jkab035Summary: Genomic selection (GS) is revolutionizing plant breeding since the selection process is done with the help of statistical machine learning methods. A model is trained with a reference population and then it is used for predicting the candidate individuals available in the testing set. However, given that breeding phenotypic values are very noisy, new models must be able to integrate not only genotypic and environmental data but also high-resolution images that have been collected by breeders with advanced image technology. For this reason, this paper explores the use of generalized Poisson regression (GPR) for genome-enabled prediction of count phenotypes using genomic and hyperspectral images. The GPR model allows integrating input information of many sources like environments, genomic data, high resolution data, and interaction terms between these three sources. We found that the best prediction performance was obtained when the three sources of information were taken into account in the predictor, and those measures of high-resolution images close to the harvest day provided the best prediction performance.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Genomic selection (GS) is revolutionizing plant breeding since the selection process is done with the help of statistical machine learning methods. A model is trained with a reference population and then it is used for predicting the candidate individuals available in the testing set. However, given that breeding phenotypic values are very noisy, new models must be able to integrate not only genotypic and environmental data but also high-resolution images that have been collected by breeders with advanced image technology. For this reason, this paper explores the use of generalized Poisson regression (GPR) for genome-enabled prediction of count phenotypes using genomic and hyperspectral images. The GPR model allows integrating input information of many sources like environments, genomic data, high resolution data, and interaction terms between these three sources. We found that the best prediction performance was obtained when the three sources of information were taken into account in the predictor, and those measures of high-resolution images close to the harvest day provided the best prediction performance.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org