Knowledge Center Catalog

Local cover image
Local cover image

Transpiration increases under high‐temperature stress : potential mechanisms, trade‐offs and prospects for crop resilience in a warming world

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Oxford (United Kingdom) : Wiley, 2020.ISSN:
  • 0140-7791
  • 1365-3040 (Online)
Subject(s): In: Plant Cell and Environment In pressSummary: The frequency and intensity of high‐temperature stress events are expected to increase as climate change intensifies. Concomitantly, an increase in evaporative demand, driven in part by global warming, is also taking place worldwide. Despite this, studies examining high‐temperature stress impacts on plant productivity seldom consider this interaction to identify traits enhancing yield resilience towards climate change. Further, new evidence documents substantial increases in plant transpiration rate in response to high‐temperature stress even under arid environments, which raise a trade‐off between the need for latent cooling dictated by excessive temperatures and the need for water conservation dictated by increasing evaporative demand. However, the mechanisms behind those responses, and the potential to design the next generation of crops successfully navigating this trade‐off, remain poorly investigated. Here, we review potential mechanisms underlying reported increases in transpiration rate under high‐temperature stress, within the broader context of their impact on water conservation needed for crop drought tolerance. We outline three main contributors to this phenomenon, namely stomatal, cuticular and water viscosity‐based mechanisms, and we outline research directions aiming at designing new varieties optimized for specific temperature and evaporative demand regimes to enhance crop productivity under a warmer and dryer climate.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

The frequency and intensity of high‐temperature stress events are expected to increase as climate change intensifies. Concomitantly, an increase in evaporative demand, driven in part by global warming, is also taking place worldwide. Despite this, studies examining high‐temperature stress impacts on plant productivity seldom consider this interaction to identify traits enhancing yield resilience towards climate change. Further, new evidence documents substantial increases in plant transpiration rate in response to high‐temperature stress even under arid environments, which raise a trade‐off between the need for latent cooling dictated by excessive temperatures and the need for water conservation dictated by increasing evaporative demand. However, the mechanisms behind those responses, and the potential to design the next generation of crops successfully navigating this trade‐off, remain poorly investigated. Here, we review potential mechanisms underlying reported increases in transpiration rate under high‐temperature stress, within the broader context of their impact on water conservation needed for crop drought tolerance. We outline three main contributors to this phenomenon, namely stomatal, cuticular and water viscosity‐based mechanisms, and we outline research directions aiming at designing new varieties optimized for specific temperature and evaporative demand regimes to enhance crop productivity under a warmer and dryer climate.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org