Knowledge Center Catalog

Local cover image
Local cover image

Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: St. Paul, MN (USA) : American Phytopathological Society, 2020.ISSN:
  • 0191-2917
  • 1943-7692 (Online)
Subject(s): In: Plant Disease v. 104, no. 6, p. 1751-1762Summary: Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive fungal diseases of wheat worldwide. The expanding Yr26-virulent Pst race (V26) group overcomes almost all currently deployed resistance genes in China and has continued to accumulate new virulence. Investigating the genetic architecture of stripe rust resistance in common wheat is an important basis for a successful utilization of resistance in breeding programs. A panel of 410 exotic wheat germplasms was used for characterizing new stripe rust resistance loci. This panel was genotyped using high-density wheat 660K single-nucleotide polymorphism (SNP) array, and phenotypic evaluation of seedlings for stripe rust resistance was performed using multiple Pst races. Thirty-five loci conferring resistance were identified through genome-wide association mapping, and explained phenotypic variances ranged from 53 to 75%. Of these, 14 were colocated in the proximity of the known loci, including cataloged Yr genes Yr9, Yr10, Yr26, Yr33, Yr47, Yr56, Yr57, Yr64, Yr67, Yr72, and Yr81 and three temporarily designated as YrCen, YrNP63, and YrRC detected in our quantitative trait locus (QTL) mapping studies. Seven of them (Yr9, Yr10, Yr24/26, Yr81, YrCEN, YrNP63, and YrRC) were confirmed by molecular detection or genetic analysis. New loci that were identified to be different from reported Yr genes need further confirmation. Nine QTL with significantly large phenotypic effect on resistance to all tested races were considered as major loci for effective resistance. The identified loci enrich our stripe rust resistance gene pool, and the linked SNPs should be useful for marker-assisted selection in breeding programs.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive fungal diseases of wheat worldwide. The expanding Yr26-virulent Pst race (V26) group overcomes almost all currently deployed resistance genes in China and has continued to accumulate new virulence. Investigating the genetic architecture of stripe rust resistance in common wheat is an important basis for a successful utilization of resistance in breeding programs. A panel of 410 exotic wheat germplasms was used for characterizing new stripe rust resistance loci. This panel was genotyped using high-density wheat 660K single-nucleotide polymorphism (SNP) array, and phenotypic evaluation of seedlings for stripe rust resistance was performed using multiple Pst races. Thirty-five loci conferring resistance were identified through genome-wide association mapping, and explained phenotypic variances ranged from 53 to 75%. Of these, 14 were colocated in the proximity of the known loci, including cataloged Yr genes Yr9, Yr10, Yr26, Yr33, Yr47, Yr56, Yr57, Yr64, Yr67, Yr72, and Yr81 and three temporarily designated as YrCen, YrNP63, and YrRC detected in our quantitative trait locus (QTL) mapping studies. Seven of them (Yr9, Yr10, Yr24/26, Yr81, YrCEN, YrNP63, and YrRC) were confirmed by molecular detection or genetic analysis. New loci that were identified to be different from reported Yr genes need further confirmation. Nine QTL with significantly large phenotypic effect on resistance to all tested races were considered as major loci for effective resistance. The identified loci enrich our stripe rust resistance gene pool, and the linked SNPs should be useful for marker-assisted selection in breeding programs.

Wheat CRP FP3 - Global partnership to accelerate genetic gain in farmers field

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org