Knowledge Center Catalog

Local cover image
Local cover image

Bayesian learning in social networks

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: United Kingdom : Oxford University Press, 2011.ISSN:
  • 0034-6527
  • 1467-937X (Online)
Subject(s): In: Review of Economic Studies v. 78, no. 4, p. 1201-1236Summary: We study the (perfect Bayesian) equilibrium of a sequential learning model over a general social network. Each individual receives a signal about the underlying state of the world, observes the past actions of a stochastically generated neighbourhood of individuals, and chooses one of two possible actions. The stochastic process generating the neighbourhoods defines the network topology. We characterize pure strategy equilibria for arbitrary stochastic and deterministic social networks and characterize the conditions under which there will be asymptotic learning—convergence (in probability) to the right action as the social network becomes large. We show that when private beliefs are unbounded (meaning that the implied likelihood ratios are unbounded), there will be asymptotic learning as long as there is some minimal amount of “expansion in observations”. We also characterize conditions under which there will be asymptotic learning when private beliefs are bounded.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

We study the (perfect Bayesian) equilibrium of a sequential learning model over a general social network. Each individual receives a signal about the underlying state of the world, observes the past actions of a stochastically generated neighbourhood of individuals, and chooses one of two possible actions. The stochastic process generating the neighbourhoods defines the network topology. We characterize pure strategy equilibria for arbitrary stochastic and deterministic social networks and characterize the conditions under which there will be asymptotic learning—convergence (in probability) to the right action as the social network becomes large. We show that when private beliefs are unbounded (meaning that the implied likelihood ratios are unbounded), there will be asymptotic learning as long as there is some minimal amount of “expansion in observations”. We also characterize conditions under which there will be asymptotic learning when private beliefs are bounded.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org