A probabilistic bio-economic assessment of the global consequences of wheat leaf rust
Material type: ArticleLanguage: English Publication details: St. Paul, MN (USA) : American Phytopathological Society (APS), 2020.ISSN:- 0031-949X
- 1943-7684 (Online)
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | Reprints Collection | Available |
Peer review
This study provides a bio-economic assessment of the global climate suitability and probabilistic crop-loss estimates attributable to wheat leaf rust. We draw on a purpose-built, spatially-explicit, eco-climatic suitability model for wheat leaf rust to estimate that 94.4% of global wheat production is vulnerable to the disease. To reflect the spatio-temporal variation in leaf rust losses, we used a probabilistic approach to estimate a representative rust loss distribution based on long-term, state-level annual U.S. loss estimates. Applying variants of this representative loss distribution to selected wheat production areas in 15 epidemiological zones throughout the world, we project global annual average losses of 8.6 million metric tons of grain for the period 2000-2050 based on a conservative, base-line scenario, and 18.3 million metric tons based on a high-loss scenario; equivalent to economic losses ranging from US$1.5 to US$3.3 billion per year (2016 U.S. prices). Even the more conservative base-line estimate implies that a sustained, worldwide investment of US$50.5 million per year in leaf rust research is economically justified.
Text in English