Knowledge Center Catalog

Local cover image
Local cover image

Data analysis in agricultural experimentation. III. Multiple comparisons

By: Material type: ArticleArticleLanguage: English Publication details: Cambridge (United Kingdom) : Cambridge University Press, 1993.ISSN:
  • 0014-4797
  • 1469-4441 (Online)
Subject(s): In: Experimental Agriculture v. 29, no. 1, p. 1-8Summary: Multiple comparison methods are described. It is noted that they have always been controversial, partly because they emphasize testing at the expense of estimation, partly because they pay no regard to the purpose of the investigation, partly because there are so many competing forms and, not least, because they can lead to illogical conclusions. There are many identified instances where they have been found misleading. An alternative approach is to designate ‘contrasts of interest’ from the start and to concentrate estimation and testing upon them. In many experiments the approach is powerful and definite in use, but sometimes there is no reason to designate one contrast rather than another, for example, in the assessment of new strains or new chemicals. In such circumstances some have found multiple comparisons useful, especially when the problem is to ‘pick the winner’. Bayesian methods and cluster analysis are considered briefly as other alternatives. The current over-use of multiple comparisons is deplored. It is thought to arise in part from bad teaching and in part from the general reluctance of non-statisticians to venture into the unknown territory of specifying contrasts. A bad situation is made worse by the availability of software that carries out multiple comparisons as a matter of course.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Multiple comparison methods are described. It is noted that they have always been controversial, partly because they emphasize testing at the expense of estimation, partly because they pay no regard to the purpose of the investigation, partly because there are so many competing forms and, not least, because they can lead to illogical conclusions. There are many identified instances where they have been found misleading. An alternative approach is to designate ‘contrasts of interest’ from the start and to concentrate estimation and testing upon them. In many experiments the approach is powerful and definite in use, but sometimes there is no reason to designate one contrast rather than another, for example, in the assessment of new strains or new chemicals. In such circumstances some have found multiple comparisons useful, especially when the problem is to ‘pick the winner’. Bayesian methods and cluster analysis are considered briefly as other alternatives. The current over-use of multiple comparisons is deplored. It is thought to arise in part from bad teaching and in part from the general reluctance of non-statisticians to venture into the unknown territory of specifying contrasts. A bad situation is made worse by the availability of software that carries out multiple comparisons as a matter of course.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org