Knowledge Center Catalog

Local cover image
Local cover image

Interpreting leaf water potential measurements with a model of the soil‐plant‐atmosphere continuum

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: United Kingdom : Wiley, 1972.ISSN:
  • 0031-9317
  • 1399-3054 (Online)
Subject(s): In: Physiologia Plantarum v. 27, no. 2, p. 161-168Summary: A water flux model, which assumes that the dynamic functioning of the soil‐plant‐atmosphere continuum may be described by a series of steady states, was examined as a means for interpreting leaf water potential measurements in ‘Valencia’ orange trees (Citrus sinensis (L.) Osbeck). According to the model, leaf water potential should be related to transpirational flux, which in this experiment was estimated by the ratio of vapor pressure deficit of the atmosphere to leaf diffusion resistance (VPD/rleaf). Leaf water potentials decreased in a specific relationship with increasing values of VPD/rleaf provided that soil water was adequate and soil temperature was not too low, but regardless of season of the year or climatic or edaphic differences among 3 field locations. When soil water tensions exceeded 0.3 bar or when soil temperatures were lower than 15°C, deviations from the model occurred in the form of more negative leaf water potentials than predicted by VPD/rleaf. The model predicts from simple measurements made on intact plants that these differences were due to the modification of flow resistances by cool temperatures and the modification of both resistances and the potential of water at the source in the case of soil water depletion. The model may be a useful tool for interpreting plant water potential data under contrasting environmental conditions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

A water flux model, which assumes that the dynamic functioning of the soil‐plant‐atmosphere continuum may be described by a series of steady states, was examined as a means for interpreting leaf water potential measurements in ‘Valencia’ orange trees (Citrus sinensis (L.) Osbeck). According to the model, leaf water potential should be related to transpirational flux, which in this experiment was estimated by the ratio of vapor pressure deficit of the atmosphere to leaf diffusion resistance (VPD/rleaf). Leaf water potentials decreased in a specific relationship with increasing values of VPD/rleaf provided that soil water was adequate and soil temperature was not too low, but regardless of season of the year or climatic or edaphic differences among 3 field locations. When soil water tensions exceeded 0.3 bar or when soil temperatures were lower than 15°C, deviations from the model occurred in the form of more negative leaf water potentials than predicted by VPD/rleaf. The model predicts from simple measurements made on intact plants that these differences were due to the modification of flow resistances by cool temperatures and the modification of both resistances and the potential of water at the source in the case of soil water depletion. The model may be a useful tool for interpreting plant water potential data under contrasting environmental conditions.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org