Knowledge Center Catalog

Local cover image
Local cover image

A wheat chromosome 5AL region confers seedling resistance to both tan spot and Septoria nodorum blotch in two mapping populations

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Netherlands : Elsevier, 2019.ISSN:
  • 2214-5141
Subject(s): Online resources: In: The Crop Journal v. 7, no. 6, p. 809-818Summary: Tan spot (TS) and Septoria nodorum blotch (SNB), caused by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, are important fungal leaf-spotting diseases of wheat that cause significant losses in grain yield. In this study, two recombinant inbred line populations, ‘Bartai’ × ‘Ciano T79’ (referred to as B × C) and ‘Cascabel’ × ‘Ciano T79’ (C × C) were tested for TS and SNB response in order to determine the genetic basis of seedling resistance. Genotyping was performed with the DArTseq genotyping-by-sequencing (GBS) platform. A chromosome region on 5AL conferred resistance to TS and SNB in both populations, but the effects were larger in B × C (R2 = 11.2%–16.8%) than in C × C (R2 = 2.5%–9.7%). Additionally, the chromosome region on 5BL (presumably Tsn1) was significant for both TS and SNB in B × C but not in C × C. Quantitative trait loci (QTL) with minor effects were identified on chromosomes 1B, 2A, 2B, 3A, 3B, 4D, 5A, 5B, 5D, 6B, and 6D. The two CIMMYT breeding lines ‘Bartai’ and ‘Cascabel’ contributed resistance alleles at both 5AL and 5BL QTL mentioned above. The QTL on 5AL showed linkage with the Vrn-A1 locus, whereas the vrn-A1 allele conferring lateness was associated with resistance to TS and SNB.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Tan spot (TS) and Septoria nodorum blotch (SNB), caused by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, are important fungal leaf-spotting diseases of wheat that cause significant losses in grain yield. In this study, two recombinant inbred line populations, ‘Bartai’ × ‘Ciano T79’ (referred to as B × C) and ‘Cascabel’ × ‘Ciano T79’ (C × C) were tested for TS and SNB response in order to determine the genetic basis of seedling resistance. Genotyping was performed with the DArTseq genotyping-by-sequencing (GBS) platform. A chromosome region on 5AL conferred resistance to TS and SNB in both populations, but the effects were larger in B × C (R2 = 11.2%–16.8%) than in C × C (R2 = 2.5%–9.7%). Additionally, the chromosome region on 5BL (presumably Tsn1) was significant for both TS and SNB in B × C but not in C × C. Quantitative trait loci (QTL) with minor effects were identified on chromosomes 1B, 2A, 2B, 3A, 3B, 4D, 5A, 5B, 5D, 6B, and 6D. The two CIMMYT breeding lines ‘Bartai’ and ‘Cascabel’ contributed resistance alleles at both 5AL and 5BL QTL mentioned above. The QTL on 5AL showed linkage with the Vrn-A1 locus, whereas the vrn-A1 allele conferring lateness was associated with resistance to TS and SNB.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org