Normal view MARC view ISBD view

Genetic dissection of drought and heat‐responsive agronomic traits in wheat

By: Long Li.
Contributor(s): Xinguo Mao | Jingyi Wang | Xiaoping Chang | Reynolds, M.P | Ruilian Jing.
Material type: materialTypeLabelArticlePublisher: Oxford (United Kingdom) : Wiley, 2019ISSN: 1365-3040 (Online).Subject(s): Abiotic stress | Agronomic characters | Quantitative Trait Loci | Drought stress | Genomes | Heat stress | WheatOnline resources: Open Access through Dspace In: Plant Cell and Environment In presssSummary: High yield and wide adaptation are principal targets of wheat breeding but are hindered by limited knowledge on genetic basis of agronomic traits and abiotic stress tolerances. In this study, 277 wheat accessions were phenotyped across 30 environments with non‐stress, drought‐stressed, heat‐stressed, and drought‐heat‐stressed treatments and were subjected to genome‐wide association study using 395 681 single nucleotide polymorphisms. We detected 295 associated loci including consistent loci for agronomic traits across different treatments and eurytopic loci for multiple abiotic stress tolerances. A total of 22 loci overlapped with quantitative trait loci identified by biparental quantitative trait loci mapping. Six loci were simultaneously associated with agronomic traits and abiotic stress tolerance, four of which fell within selective sweep regions. Selection in Chinese wheat has increased the frequency of superior marker alleles controlling yield‐related traits in the four loci during past decades, which conversely diminished favourable genetic variation controlling abiotic stress tolerance in the same loci; two promising candidate paralogous genes colocalized with such loci, thereby providing potential targets for studying the molecular mechanism of stress tolerance–productivity trade‐off. These results uncovering promising alleles controlling agronomic traits and/or multiple abiotic stress tolerances, providing insights into heritable covariation between yield and abiotic stress tolerance, will accelerate future efforts for wheat improvement.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

High yield and wide adaptation are principal targets of wheat breeding but are hindered by limited knowledge on genetic basis of agronomic traits and abiotic stress tolerances. In this study, 277 wheat accessions were phenotyped across 30 environments with non‐stress, drought‐stressed, heat‐stressed, and drought‐heat‐stressed treatments and were subjected to genome‐wide association study using 395 681 single nucleotide polymorphisms. We detected 295 associated loci including consistent loci for agronomic traits across different treatments and eurytopic loci for multiple abiotic stress tolerances. A total of 22 loci overlapped with quantitative trait loci identified by biparental quantitative trait loci mapping. Six loci were simultaneously associated with agronomic traits and abiotic stress tolerance, four of which fell within selective sweep regions. Selection in Chinese wheat has increased the frequency of superior marker alleles controlling yield‐related traits in the four loci during past decades, which conversely diminished favourable genetic variation controlling abiotic stress tolerance in the same loci; two promising candidate paralogous genes colocalized with such loci, thereby providing potential targets for studying the molecular mechanism of stress tolerance–productivity trade‐off. These results uncovering promising alleles controlling agronomic traits and/or multiple abiotic stress tolerances, providing insights into heritable covariation between yield and abiotic stress tolerance, will accelerate future efforts for wheat improvement.

Wheat CRP FP3 - Global partnership to accelerate genetic gain in farmers field

Text in English

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org