Knowledge Center Catalog

Local cover image
Local cover image

Applications of machine learning methods to genomic selection in breeding wheat for rust resistance

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Madison, U.S. : Crop Science Society of America, 2018.Subject(s): Online resources: In: Plant Genome v. 11, no. 2, art. 170104Summary: New methods and algorithms are being developed for predicting untested phenotypes in schemes commonly used in genomic selection (GS). The prediction of disease resistance in GS has its own peculiarities: a) there is consensus about the additive nature of quantitative adult plant resistance (APR) genes, although epistasis has been found in some populations; b) rust resistance requires effective combinations of major and minor genes; and c) disease resistance is commonly measured based on ordinal scales (e.g., scales from 1?5, 1?9, etc.). Machine learning (ML) is a field of computer science that uses algorithms and existing samples to capture characteristics of target patterns. In this paper we discuss several state-of-the-art ML methods that could be applied in GS. Many of them have already been used to predict rust resistance in wheat. Others are very appealing, given their performance for predicting other wheat traits with similar characteristics. We briefly describe the proposed methods in the Appendix.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Open Access

Peer review

New methods and algorithms are being developed for predicting untested phenotypes in schemes commonly used in genomic selection (GS). The prediction of disease resistance in GS has its own peculiarities: a) there is consensus about the additive nature of quantitative adult plant resistance (APR) genes, although epistasis has been found in some populations; b) rust resistance requires effective combinations of major and minor genes; and c) disease resistance is commonly measured based on ordinal scales (e.g., scales from 1?5, 1?9, etc.). Machine learning (ML) is a field of computer science that uses algorithms and existing samples to capture characteristics of target patterns. In this paper we discuss several state-of-the-art ML methods that could be applied in GS. Many of them have already been used to predict rust resistance in wheat. Others are very appealing, given their performance for predicting other wheat traits with similar characteristics. We briefly describe the proposed methods in the Appendix.

Text in English

CIMMYT Informa : 2019 (September 13, 2018)

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org