Normal view MARC view ISBD view

Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions [Electronic Resource]

By: Makumbi, D.
Contributor(s): Assanga, S | Diallo, A | Magorokosho, C | Asea, G | Regasa, M.W | Banziger, M.
Material type: materialTypeLabelArticlePublisher: Madison, USA : Crop Science Society of America, 2018Subject(s): Zea mays | Maize | Genetics | Combining ability | Diallel analysis | DNA Sequence | DroughtOnline resources: Open Access through DSpace In: Crop Science v. 58, no. 4, p. 1492-1507Summary: Maize (Zea mays L.) yield in sub-Saharan Africa (SSA) is low because of both abiotic and biotic constraints, and limited availability or use of improved seed in some areas. This study was conducted (i) to estimate combining ability and heterosis among seven stress-tolerant populations, and (ii) to assess diversity among the populations and the relationship between diversity and heterosis. Twenty-one hybrids developed from diallel crosses of seven populations, parents, and two checks were evaluated in 10 optimal and 11 stressed environments (drought, low N, and random stress) in Kenya, Ethiopia, Uganda, and Zimbabwe for 2 yr. Analysis II of Gardner and Eberhart showed that variety and heterosis were significant for grain yield (GY) under optimal and managed stress, and across environments. Heterosis accounted for most of the variation for GY among populations under optimal conditions (67%) and drought stress (53%), which suggested the importance of dominance in inheritance of GY under these conditions. Genetic distance (GD) among populations ranged from 0.328 to 0.477 (mean = 0.404). The correlation between GD and heterosis was low (r = 0.14-0.40) in all environments. The simple sequence repeat (SSR) marker-based and GY-based clustering of parental populations showed similar patterns, with three populations distinct from the rest, suggesting significant differentiation of allelic variation in these three populations. The SSR-based diversity and phenotypic analysis results should be useful in defining breeding strategies and maintaining heterotic patterns among these populations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Open Access

Maize (Zea mays L.) yield in sub-Saharan Africa (SSA) is low because of both abiotic and biotic constraints, and limited availability or use of improved seed in some areas. This study was conducted (i) to estimate combining ability and heterosis among seven stress-tolerant populations, and (ii) to assess diversity among the populations and the relationship between diversity and heterosis. Twenty-one hybrids developed from diallel crosses of seven populations, parents, and two checks were evaluated in 10 optimal and 11 stressed environments (drought, low N, and random stress) in Kenya, Ethiopia, Uganda, and Zimbabwe for 2 yr. Analysis II of Gardner and Eberhart showed that variety and heterosis were significant for grain yield (GY) under optimal and managed stress, and across environments. Heterosis accounted for most of the variation for GY among populations under optimal conditions (67%) and drought stress (53%), which suggested the importance of dominance in inheritance of GY under these conditions. Genetic distance (GD) among populations ranged from 0.328 to 0.477 (mean = 0.404). The correlation between GD and heterosis was low (r = 0.14-0.40) in all environments. The simple sequence repeat (SSR) marker-based and GY-based clustering of parental populations showed similar patterns, with three populations distinct from the rest, suggesting significant differentiation of allelic variation in these three populations. The SSR-based diversity and phenotypic analysis results should be useful in defining breeding strategies and maintaining heterotic patterns among these populations.

Text in English

Assanga, S. : Not in IRS staff list but CIMMYT Affiliation CIMMYT Informa : 2018 (August 30, 2018)

Diallo, A. : Not in IRS staff list but CIMMYT Affiliation

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org