Normal view MARC view ISBD view

Evaluation of grain yield and related agronomic traits of quality protein maize hybrids in Southern Africa

By: Setimela, P.S.
Contributor(s): Gasura, E | Amsal Tesfaye Tarekegne.
Material type: materialTypeLabelArticlePublisher: Netherlands : Springer, 2017Subject(s): Maize | Hybrids | Southern AfricaOnline resources: Access only for CIMMYT Staff In: Euphytica v. 213, no.12, art. 289Summary: Maize is the major staple food in southern Africa with human consumption averaging 91 kg capita−1 year−1, and normal maize is nutritionally deficient in two essential amino acids: tryptophan and lysine. Despite the development of quality protein maize (QPM) with high tryptophan and lysine, stunting and kwashiorkor remain high in sub-Saharan Africa due to lack of high yielding and adapted QPM varieties. This study aimed at evaluating a new generation of QPM varieties for yield and related agronomic traits. Before the QPM varieties were validated on-farm, they were simultaneously selected on-station under five different management conditions. In the 2014/2015 season, 10 elite QPM varieties were selected from on-station trials based on high grain yield and stability, and were compared with the best commercial check varieties on-farm. During the 2015/2016 season, some poorly performing QPM varieties were dropped while new ones were added, resulting in 12 elite QPM varieties being evaluated on-farm. Analysis of variance for the 2014/2015 season showed non-significant hybrid × management condition interaction. Mean grain yields across management conditions ranged from 1.5 to 4 t ha−1 and were higher under mild stress (2.3–5.5 t ha−1) compared to random stress conditions (1.1–2.9 t ha−1). Broad sense heritability estimates were low to moderate (11–69%), and thus could still permit effective selection of better genotypes. Yield advantage ranged from 12 to 25% across the 2 years, suggesting effective genetic gains in QPM breeding. QPM hybrids CZH132044Q, CZH142238Q and CZH142236Q were stable and high yielding. Promotion of such QPM hybrids may help reduce protein energy malnutrition.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Maize is the major staple food in southern Africa with human consumption averaging 91 kg capita−1 year−1, and normal maize is nutritionally deficient in two essential amino acids: tryptophan and lysine. Despite the development of quality protein maize (QPM) with high tryptophan and lysine, stunting and kwashiorkor remain high in sub-Saharan Africa due to lack of high yielding and adapted QPM varieties. This study aimed at evaluating a new generation of QPM varieties for yield and related agronomic traits. Before the QPM varieties were validated on-farm, they were simultaneously selected on-station under five different management conditions. In the 2014/2015 season, 10 elite QPM varieties were selected from on-station trials based on high grain yield and stability, and were compared with the best commercial check varieties on-farm. During the 2015/2016 season, some poorly performing QPM varieties were dropped while new ones were added, resulting in 12 elite QPM varieties being evaluated on-farm. Analysis of variance for the 2014/2015 season showed non-significant hybrid × management condition interaction. Mean grain yields across management conditions ranged from 1.5 to 4 t ha−1 and were higher under mild stress (2.3–5.5 t ha−1) compared to random stress conditions (1.1–2.9 t ha−1). Broad sense heritability estimates were low to moderate (11–69%), and thus could still permit effective selection of better genotypes. Yield advantage ranged from 12 to 25% across the 2 years, suggesting effective genetic gains in QPM breeding. QPM hybrids CZH132044Q, CZH142238Q and CZH142236Q were stable and high yielding. Promotion of such QPM hybrids may help reduce protein energy malnutrition.

Maize CRP FP3 - Stress resilient and nutritious maize

Text in English

CIMMYT Informa : 2005 (January 18, 2018)

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org