Normal view MARC view ISBD view

Tillage and rice straw management affect soil enzyme activities and chemical properties after three years of conservation agriculture based rice-wheat system in North-Western India

By: Kumar Kharia, S.
Contributor(s): Thind, H.S | Sandeep Sharma | Sidhu, H.S | Jat, M.L | Singh, Y.
Material type: materialTypeLabelArticlePublisher: U.S. : SCIENCEDOMAIN international, 2017Subject(s): Wheats | Rice | Agriculture | India AGROVOCOnline resources: Open Access through Dspace In: International Journal of Plant & Soil Science v. 15, no. 6, p. 1-13Summary: Aims: To evaluate the effects of rice establishment, tillage and rice straw management on changes in soil enzyme activities and chemical properties in soil after three cycles of continuous rice-wheat system. Study Design: The experiment was laid in split plot design with three replications. Place and Duration of Study: PAU, Ludhiana, 2010-2013. Methodology: The experiment was started during kharif season of 2010. The design of an experiment was having 12 treatments with 3 replications. The main plot treatments in rice (zero till direct seeded rice, ZT-DSR; conventional till direct seeded rice, CT-DSR; zero till direct transplanted rice, ZT-DTR and puddled transplanted rice, PTR) and three sub-plot treatments in wheat (conventional till wheat without rice straw, CTW-R; ZT wheat without rice straw, ZTW-R, and ZT wheat with rice straw retained as surface mulch using Happy Seeder, ZTW+R). Results: Zero tillage with rice straw retention (ZTW) as surface mulch (+R) increased wheat yield by 9% and 15% compared with conventional tillage (CTW) and ZTW with no residue (-R). Significantly higher dehydrogenase, fluorescein diacetate, alkaline phosphatase, phytase and urease activities were recorded under ZTW+R compared with ZTW/CTW-R in 0-5 cm soil layer. Organic carbon, Olsen-P, available K and DTPA-extractable micronutrients (Zn, Fe, Mn and Cu) in the surface 0-5 cm soil layer were significantly higher in ZTW+R compared with ZTW/CTW-R. Soil enzyme activities were significantly and positively correlated with each other, soil organic carbon, Olsen-P and grain yield of wheat. Conclusion: We concluded that RCTs (ZTW and rice residue retention) improve soil enzyme activities and chemical properties in surface 0-5 cm soil layer and enhance productivity and sustainability of rice-wheat system.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Aims: To evaluate the effects of rice establishment, tillage and rice straw management on changes in soil enzyme activities and chemical properties in soil after three cycles of continuous rice-wheat system.

Study Design: The experiment was laid in split plot design with three replications.

Place and Duration of Study: PAU, Ludhiana, 2010-2013.

Methodology: The experiment was started during kharif season of 2010. The design of an experiment was having 12 treatments with 3 replications. The main plot treatments in rice (zero till direct seeded rice, ZT-DSR; conventional till direct seeded rice, CT-DSR; zero till direct transplanted rice, ZT-DTR and puddled transplanted rice, PTR) and three sub-plot treatments in wheat (conventional till wheat without rice straw, CTW-R; ZT wheat without rice straw, ZTW-R, and ZT wheat with rice straw retained as surface mulch using Happy Seeder, ZTW+R).

Results: Zero tillage with rice straw retention (ZTW) as surface mulch (+R) increased wheat yield by 9% and 15% compared with conventional tillage (CTW) and ZTW with no residue (-R). Significantly higher dehydrogenase, fluorescein diacetate, alkaline phosphatase, phytase and urease activities were recorded under ZTW+R compared with ZTW/CTW-R in 0-5 cm soil layer. Organic carbon, Olsen-P, available K and DTPA-extractable micronutrients (Zn, Fe, Mn and Cu) in the surface 0-5 cm soil layer were significantly higher in ZTW+R compared with ZTW/CTW-R. Soil enzyme activities were significantly and positively correlated with each other, soil organic carbon, Olsen-P and grain yield of wheat.

Conclusion: We concluded that RCTs (ZTW and rice residue retention) improve soil enzyme activities and chemical properties in surface 0-5 cm soil layer and enhance productivity and sustainability of rice-wheat system.

Wheat CRP FP4 - Sustainable intensification of wheat - based cropping systems

Text in English

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org