Normal view MARC view ISBD view

dsDNA fluorescent quantification and genotyping in common wheat by FLUOstar System

By: Yonggui Xiao.
Contributor(s): Dreisigacker, S | Núñez-Ríos, C | Hu Weiguo | Xianchun Xia | He Zhonghu.
Material type: materialTypeLabelArticlePublisher: China : Chinese Society of Crop Science, 2017Subject(s): Wheats | Quantitative analysis | Molecular geneticsOnline resources: Access only for CIMMYT Staff In: Acta Agronomica Sinica v. 43, no. 7, p. 947-953Summary: Quantitative analysis on double-stranded DNA (dsDNA) lays a foundation in molecular biology research in plants, particularly important for genotyping in molecular breeding. The objective of this study was to establish standard curve for fluorescence quantitative analysis by lambda DNA, to compare the difference between dsDNA value in fluorescence system and ultraviolet spectrophotometry, and to identify the allelic variations of rust resistance genes in wheat. The fluorescent dye could be efficiently performed in the quantitative analysis with micro dsDNA concentration (< 1.1 ng ?L?1). However, the fluorescent dye could lead to uncertainty of original concentrations of wheat leaf and grain genome DNA, due to more fold serial dilutions for higher DNA concentration. A downward tendency was happened in fluorescent intensity when fluorescent reaction volume was tapered, which influenced the accuracy of DNA concentration. The volume of reaction system mixed nucleic acid and fluorescent dye should be more than 200 ?L for accurate determination of micro dsDNA. For genotyping on PCR products, the volume of fluorescent reaction system should be more than 40 ?L. FLUOstar could be used for identifying the dominant marker, for instance csSr32#1 (Sr32) and IB-267 (Sr50), its accuracy was 100% in correspondence with that from agarose gel electrophoresis. Co-dominant marker with the characteristic of peculiarity and major difference in amplified fragment length ( ≥100 bp), such as We173 (Yr26), could also be identified by fluorescent analysis. Compared with agarose gel electrophoresis method, fluorescent method have a simple, convenient, and rapid oparetion with high repeatability, and can be used for segregating generations in marker-assisted breeding.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Quantitative analysis on double-stranded DNA (dsDNA) lays a foundation in molecular biology research in plants, particularly important for genotyping in molecular breeding. The objective of this study was to establish standard curve for fluorescence quantitative analysis by lambda DNA, to compare the difference between dsDNA value in fluorescence system and ultraviolet spectrophotometry, and to identify the allelic variations of rust resistance genes in wheat. The fluorescent dye could be efficiently performed in the quantitative analysis with micro dsDNA concentration (< 1.1 ng ?L?1). However, the fluorescent dye could lead to uncertainty of original concentrations of wheat leaf and grain genome DNA, due to more fold serial dilutions for higher DNA concentration. A downward tendency was happened in fluorescent intensity when fluorescent reaction volume was tapered, which influenced the accuracy of DNA concentration. The volume of reaction system mixed nucleic acid and fluorescent dye should be more than 200 ?L for accurate determination of micro dsDNA. For genotyping on PCR products, the volume of fluorescent reaction system should be more than 40 ?L. FLUOstar could be used for identifying the dominant marker, for instance csSr32#1 (Sr32) and IB-267 (Sr50), its accuracy was 100% in correspondence with that from agarose gel electrophoresis. Co-dominant marker with the characteristic of peculiarity and major difference in amplified fragment length ( ≥100 bp), such as We173 (Yr26), could also be identified by fluorescent analysis. Compared with agarose gel electrophoresis method, fluorescent method have a simple, convenient, and rapid oparetion with high repeatability, and can be used for segregating generations in marker-assisted breeding.

Wheat CRP FP2 - Novel diversity and tools adapt to climate change and resource constraints

Text in Chinese

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org