Knowledge Center Catalog

Local cover image
Local cover image

Cereal cyst nematodes : a complex and destructive group of Heterodera species

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: St. Paul, MN, U.S. : APS, 2017.Subject(s): Online resources: In: Plant Disease v. 101, no. 10, p. 1692-1720Summary: Small grain cereals have served as the basis for staple foods, beverages, and animal feed for thousands of years. Wheat, barley, oats, rye, triticale, rice, and others are rich in calories, proteins, carbohydrates, vitamins, and minerals. These cereals supply 20% of the calories consumed by people worldwide and are therefore a primary source of energy for humans and play a vital role in global food and nutrition security. Global production of small grains increased linearly from 1960 to 2005, and then began to decline. Further decline in production is projected to continue through 2050 while global demand for these grains is projected to increase by 1% per annum. Currently, wheat, barley, and oat production exceeds consumption in developed countries, while in developing countries the consumption rate is higher than production. An increasing demand for meat and livestock products is likely to compound the demand for cereals in developing countries. Current production levels and trends will not be sufficient to fulfill the projected global demand generated by increased populations. For wheat, global production will need to be increased by 60% to fulfill the estimated demand in 2050. Until recently, global wheat production increased mostly in response to development of improved cultivars and farming practices and technologies. Production is now limited by biotic and abiotic constraints, including diseases, nematodes, insect pests, weeds, and climate. Among these constraints, plant-parasitic nematodes alone are estimated to reduce production of all world crops by 10%. Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals. Heavily invaded young plants are stunted and their lower leaves are often chlorotic, forming pale green patches in the field. Mature plants are also stunted, have a reduced number of tillers, and the roots are shallow and have a “bushy-knotted” appearance. CCNs comprise a number of closely-related species and are found in most regions where cereals are produced.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Small grain cereals have served as the basis for staple foods, beverages, and animal feed for thousands of years. Wheat, barley, oats, rye, triticale, rice, and others are rich in calories, proteins, carbohydrates, vitamins, and minerals. These cereals supply 20% of the calories consumed by people worldwide and are therefore a primary source of energy for humans and play a vital role in global food and nutrition security. Global production of small grains increased linearly from 1960 to 2005, and then began to decline. Further decline in production is projected to continue through 2050 while global demand for these grains is projected to increase by 1% per annum. Currently, wheat, barley, and oat production exceeds consumption in developed countries, while in developing countries the consumption rate is higher than production. An increasing demand for meat and livestock products is likely to compound the demand for cereals in developing countries. Current production levels and trends will not be sufficient to fulfill the projected global demand generated by increased populations. For wheat, global production will need to be increased by 60% to fulfill the estimated demand in 2050. Until recently, global wheat production increased mostly in response to development of improved cultivars and farming practices and technologies. Production is now limited by biotic and abiotic constraints, including diseases, nematodes, insect pests, weeds, and climate. Among these constraints, plant-parasitic nematodes alone are estimated to reduce production of all world crops by 10%. Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals. Heavily invaded young plants are stunted and their lower leaves are often chlorotic, forming pale green patches in the field. Mature plants are also stunted, have a reduced number of tillers, and the roots are shallow and have a “bushy-knotted” appearance. CCNs comprise a number of closely-related species and are found in most regions where cereals are produced.

Wheat CRP FP3 - Global partnership to accelerate genetic gain in farmers field

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org