Normal view MARC view ISBD view

Productivity and profitability of manual and mechanized conservation agriculture (CA) systems in Eastern Zambia

By: Mupangwa, W.
Contributor(s): Mutenje, M | Thierfelder, C | Mwila, M | Malumo, H | Mujeyi, A | Setimela, P.S.
Material type: materialTypeLabelArticlePublisher: United Kingdom : Cambridge University Press, 2017Subject(s): Conservation agriculture | Productivity | Zambia AGROVOCOnline resources: Access only for CIMMYT Staff In: Renewable Agriculture and Food Systems In pressSummary: Climate variability and declining soil fertility pose a major threat to sustainable agronomic and economic growth in Zambia. The objective of this study was to assess crop yield, land and labor productivity of conservation agriculture (CA) technologies in Eastern Zambia. On-farm trials were run from 2012–2015 and farmers were replicates of a randomized complete block design. The trials compared three CA systems against a conventional practice. Yield and net return ha−1 were determined for maize and legume yield (kg ha−1) produced by ridge and furrow tillage, CA dibble stick planting, CA animal traction ripping and direct seeding. The dibble stick, ripline and direct seeding CA systems had 6–18, 12–28 and 8–9% greater maize yield relative to the conventional tillage system, respectively. Rotation of maize with cowpea and soybean significantly increased maize yields in all CA systems. Intercropping maize with cowpea increased land productivity (e.g., the land equivalent ratio for four seasons was 2.01) compared with full rotations under CA. Maize/cowpea intercropping in dibble stick CA produced the greatest net returns (US$312-767 ha−1) compared with dibble stick maize-cowpea rotation (US$204-657), dibble stick maize monoculture (US$108-584) and the conventional practice (US$64-516). The net-return for the animal traction CA systems showed that maize-soybean rotations using the ripper were more profitable than the direct seeder or conventional ridge and furrow systems. Agronomic and economic benefits of CA-based cropping systems highlight the good potential for improved food security and agricultural productivity for smallholder farmers.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Climate variability and declining soil fertility pose a major threat to sustainable agronomic and economic growth in Zambia. The objective of this study was to assess crop yield, land and labor productivity of conservation agriculture (CA) technologies in Eastern Zambia. On-farm trials were run from 2012–2015 and farmers were replicates of a randomized complete block design. The trials compared three CA systems against a conventional practice. Yield and net return ha−1 were determined for maize and legume yield (kg ha−1) produced by ridge and furrow tillage, CA dibble stick planting, CA animal traction ripping and direct seeding. The dibble stick, ripline and direct seeding CA systems had 6–18, 12–28 and 8–9% greater maize yield relative to the conventional tillage system, respectively. Rotation of maize with cowpea and soybean significantly increased maize yields in all CA systems. Intercropping maize with cowpea increased land productivity (e.g., the land equivalent ratio for four seasons was 2.01) compared with full rotations under CA. Maize/cowpea intercropping in dibble stick CA produced the greatest net returns (US$312-767 ha−1) compared with dibble stick maize-cowpea rotation (US$204-657), dibble stick maize monoculture (US$108-584) and the conventional practice (US$64-516). The net-return for the animal traction CA systems showed that maize-soybean rotations using the ripper were more profitable than the direct seeder or conventional ridge and furrow systems. Agronomic and economic benefits of CA-based cropping systems highlight the good potential for improved food security and agricultural productivity for smallholder farmers.

Maize CRP FP1 - Sustainable intensification of maize-based farming systems

Text in English

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org