Normal view MARC view ISBD view

QTL Mapping for gray leaf spot resistance in a tropical maize population [Electronic Resource]

By: Liu, L.
Contributor(s): Zhang, Y.D | Li, H.Y | Bi, Y.Q | Yu, L.J | Fan, X.M | Tang, J | Kang, M.S | Jeffers, D.P.
Material type: materialTypeLabelArticlePublisher: USA : APS, 2015Subject(s): Maize | Quantitative Trait Loci | Tropical zones | Genetic maps AGROVOC | Disease resistanceOnline resources: Access only for CIMMYT Staff In: Plant Disease v. 100, no. 2, p. 304-312Summary: A tropical gray leaf spot (GLS)-resistant line, YML 32, was crossed to a temperate GLS-susceptible line, Ye 478, to produce an F2:3 population for the identification of quantitative trait loci (QTL) associated with resistance to GLS. The population was evaluated for GLS disease resistance and flowering time at two locations in Yunnan province. Seven QTL using GLS disease scores and six QTL using flowering time were identified on chromosomes 2, 3, 4, 5, and 8 in the YML 32 × Ye 478 maize population. All QTL, except one identified on chromosome 2 using flowering time, were overlapped with the QTL for GLS disease scores. The results indicated that QTL for flowering time in this population strongly corresponded to QTL for GLS resistance. Among the QTL, qRgls.yaas-8-1/qFt.yaas-8 with the largest genetic effect accounted for 17.9 to 18.1 and 11.0 to 21.42% of variations for GLS disease scores and flowering time, respectively, and these should be very useful for improving resistance to GLS, especially in subtropical maize breeding programs. The QTL effects for resistance to GLS were predominantly additive in nature, with a dominance effect having been found for two QTL on the basis of joint segregation genetic analysis and QTL analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

A tropical gray leaf spot (GLS)-resistant line, YML 32, was crossed to a temperate GLS-susceptible line, Ye 478, to produce an F2:3 population for the identification of quantitative trait loci (QTL) associated with resistance to GLS. The population was evaluated for GLS disease resistance and flowering time at two locations in Yunnan province. Seven QTL using GLS disease scores and six QTL using flowering time were identified on chromosomes 2, 3, 4, 5, and 8 in the YML 32 × Ye 478 maize population. All QTL, except one identified on chromosome 2 using flowering time, were overlapped with the QTL for GLS disease scores. The results indicated that QTL for flowering time in this population strongly corresponded to QTL for GLS resistance. Among the QTL, qRgls.yaas-8-1/qFt.yaas-8 with the largest genetic effect accounted for 17.9 to 18.1 and 11.0 to 21.42% of variations for GLS disease scores and flowering time, respectively, and these should be very useful for improving resistance to GLS, especially in subtropical maize breeding programs. The QTL effects for resistance to GLS were predominantly additive in nature, with a dominance effect having been found for two QTL on the basis of joint segregation genetic analysis and QTL analysis.

Global Maize Program

Text in english

INT1482

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org