Knowledge Center Catalog

Local cover image
Local cover image

Chapter 44. Global crop improvement networks to bridge technology gaps

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: New York : Springer Berlin Heidelberg, 2015.Subject(s): Online resources: In: Advances in wheat genetics p. 387-399Summary: The International Wheat Improvement Network (IWIN), an alliance of national agricultural research systems (NARSs), International Maize and Wheat Improvement Center (CIMMYT), International Center for Agricultural Research in the Dry Areas (ICARDA), and advanced research institutes (ARIs), continues to deploy cutting-edge science alongside practical multi-disciplinary applications, resulting in the development of germplasm that has made major contributions during the Green Revolution. The continuous supply of improved germplasm for nearly half a century has also enabled developing countries to have a sustained increase of wheat production and productivity and thereby improving food security and farmers’ livelihoods. Wheat production levels have increased from 235 million tons in 1961 to 691 million tons in 2012. Yet, global food consumption has exceeded production for 6 of the last 11 years (2004–2010), and food reserves are now ‘dangerously low,’ particularly for staple grains such as wheat and maize. Changing diets, urbanization, and other factors mean that demand for wheat is likely to only multiply further, and therefore wheat yields must increase from the current global average of 3 t per hectare. According to some estimates, the global wheat production must increase at least by 1.6 % annually to meet a projected yearly wheat demand of 760 million tons by 2020. In the year 2050, the world population is estimated to be nine billion and the demand for wheat reaches more than 900 million tons. Fulfi lling this demand is very challenging with the current scenario of climate change, increasing drought/ water shortage, soil degradation, reduced supply & increasing cost of fertilizers, increasing demand for bio-fuel, and emergence of new virulent diseases and pests. This paper presents a review and insight about the past and current contributions of IWIN, breeding progresses and genetic gains, and its future role in offsetting the major global challenges of wheat production.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Book CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Open Access

The International Wheat Improvement Network (IWIN), an alliance of national agricultural research systems (NARSs), International Maize and Wheat Improvement Center (CIMMYT), International Center for Agricultural Research in the Dry Areas (ICARDA), and advanced research institutes (ARIs), continues to deploy cutting-edge science alongside practical multi-disciplinary applications, resulting in the development of germplasm that has made major contributions during the Green Revolution. The continuous supply of improved germplasm for nearly half a century has also enabled developing countries to have a sustained increase of wheat production and productivity and thereby improving food security and farmers’ livelihoods. Wheat production levels have increased from 235 million tons in 1961 to 691 million tons in 2012. Yet, global food consumption has exceeded production for 6 of the last 11 years (2004–2010), and food reserves are now ‘dangerously low,’ particularly for staple grains such as wheat and maize. Changing diets, urbanization, and other factors mean that demand for wheat is likely to only multiply further, and therefore wheat yields must increase from the current global average of 3 t per hectare. According to some estimates, the global wheat production must increase at least by 1.6 % annually to meet a projected yearly wheat demand of 760 million tons by 2020. In the year 2050, the world population is estimated to be nine billion and the demand for wheat reaches more than 900 million tons. Fulfi lling this demand is very challenging with the current scenario of climate change, increasing drought/ water shortage, soil degradation, reduced supply & increasing cost of fertilizers, increasing demand for bio-fuel, and emergence of new virulent diseases and pests. This paper presents a review and insight about the past and current contributions of IWIN, breeding progresses and genetic gains, and its future role in offsetting the major global challenges of wheat production.

Global Wheat Program

Genetic Resources Program

Text in english

INT0610

INT1422

INT2585

INT1787

INT0599

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org