Normal view MARC view ISBD view

Chapter. Genome-Wide Association Mapping for Adaptation to Agronomic Plant Density: A Component of High Yield Potential in Wheat

By: Sukumaran, S.
Contributor(s): Reynolds, M.P | Lopes, M.S | Crossa, J.
Material type: materialTypeLabelChapterPublisher: Mexico : CIMMYT, USAID, MASAGRO, SAGARPA, CONACYT, 2015Subject(s): Genomes | Plant population AGROVOC | Wheat In: Proceedings of the International TRIGO Wheat Yield Potential p. 5-9Summary: Increasing yield potential per se still remains a major objective of crop improvement programs worldwide (Braun et al. 2010; Reynolds et al. 2012). A significant proportion of yield potential of CIMMYT's semi-dwarf spring wheat lines can be explained by genetic variability for adaptation to agronomic planting density (Reynolds et al., 1994a). Earlier released lower yielding lines showed a higher yield response to reduction in interplant competition-i.e. treatments that increased light penetration to the lower canopy from boot stage onwards, as well as treatments that combined increased light penetration with decreased below ground competition-than more modern higher yielding varieties. The results indicated the sensitivity of low yielding genotypes to plant density and the potential of some high yielding genotypes to perform well both under high interplant competition and reduced interplant competition. In other words high yield potential (HYP) genotypes respond less when interplant competition was reduced than the earlier released low yield potential (LYP) lines. Little is known about the genetic basis of the adaptation of wheat plants to agronomic density, which is significant considering that it is not something that would have been selected for in nature, interplant competition of single plants being of clear survival value. Our hypothesis was that adaptation to high-plant density is a component of yield potential and therefore amenable to genetic dissection. Plants subject to high density tend to reduce the number of grains set, but genotypes better adapted to the "density stress" show less reduction in the number of grains per spike. Therefore, the objectives of the present study were twofold: (1) to quantify the effects of plant density on grain yield, thousand kernel weight, and grain number, and (2) to identify genomic regions for adaptation to plant density in the wheat association mapping initiative (WAMI) panel through a genome-wide association study (GWAS).
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Book CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection Available
Total holds: 0

Open Access

Increasing yield potential per se still remains a major objective of crop improvement programs worldwide (Braun et al. 2010; Reynolds et al. 2012). A significant proportion of yield potential of CIMMYT's semi-dwarf spring wheat lines can be explained by genetic variability for adaptation to agronomic planting density (Reynolds et al., 1994a). Earlier released lower yielding lines showed a higher yield response to reduction in interplant competition-i.e. treatments that increased light penetration to the lower canopy from boot stage onwards, as well as treatments that combined increased light penetration with decreased below ground competition-than more modern higher yielding varieties. The results indicated the sensitivity of low yielding genotypes to plant density and the potential of some high yielding genotypes to perform well both under high interplant competition and reduced interplant competition. In other words high yield potential (HYP) genotypes respond less when interplant competition was reduced than the earlier released low yield potential (LYP) lines. Little is known about the genetic basis of the adaptation of wheat plants to agronomic density, which is significant considering that it is not something that would have been selected for in nature, interplant competition of single plants being of clear survival value. Our hypothesis was that adaptation to high-plant density is a component of yield potential and therefore amenable to genetic dissection. Plants subject to high density tend to reduce the number of grains set, but genotypes better adapted to the "density stress" show less reduction in the number of grains per spike. Therefore, the objectives of the present study were twofold: (1) to quantify the effects of plant density on grain yield, thousand kernel weight, and grain number, and (2) to identify genomic regions for adaptation to plant density in the wheat association mapping initiative (WAMI) panel through a genome-wide association study (GWAS).

Global Wheat Program

Genetic Resources Program

Text in english

INT3330

INT1511

INT2835

CCJL01

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org