Normal view MARC view ISBD view

Genetic variation in performance under reproductive-stage water deficit in a doubled haploid rice population in upland fields

By: Lafitte, R | Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Mexico DF (Mexico).
Contributor(s): Courtois, B [coaut.] | Ribaut, J.M.|Poland, D [eds.].
Material type: materialTypeLabelBookAnalytics: Show analyticsPublisher: Mexico, DF (Mexico) CIMMYT : 2000ISBN: 970-648-052-8.Subject(s): Cereals | Genetic control | Genetic variation | Molecular genetics | Research projects | Rice | Water deprivation | CIMMYT | Yields AGROVOC | Plant breeding AGROVOCDDC classification: 631.53 Summary: Water deficit at the flowering stage causes dramatic reductions in rice yield. Screening for tolerance to water stress at this stage is complicated by differences in flowering dates among lines and technical problems of imposing uniform, repeatable experimental conditions. The objectives of this work were to document genetic variation in tolerance to water deficit during flowering and grain fil1ing among doubled haploid rice lines (DHL) from a japonica-by-indica cross, to identify genetic markers associated with performance, and to identify secondary traits that cosegregate with yield or yield components. In one season, staggered planting dates were used to synchronize flowering. In a second season, rice was grown using furrow irrigation and two periods of moderate water deficit were imposed in order to stress al1 entries at the most sensitive stage. In both seasons, stress treatments affected the percentage of sterile spikelets and the weight per grain. Quantitative trait loci (QTLs) were identified for yield components in each season and water level. A few QTLs had consistent effects across environments and/or seasons, but others were specific to the measurement environment. Across years, the QTLs identified for yield components under stress were not identified in the control, indicating that spil1-over effects are not adequate to exploit the genetic potential for yield under stress that is present in this population. On the other hand, the interval containing the sd1 gene appears to have a major effect on sterility, yield and harvest index under varied conditions. Some QTLs for yield components under stress co- segregated with reported QTLs for drought-adaptive traits such as root depth and thickness.Collection: CIMMYT Publications Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Copy number Status Date due Barcode Item holds
Conference proceedings CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Publications Collection 631.53 RIB (Browse shelf) 1 Available K629165
Total holds: 0

Water deficit at the flowering stage causes dramatic reductions in rice yield. Screening for tolerance to water stress at this stage is complicated by differences in flowering dates among lines and technical problems of imposing uniform, repeatable experimental conditions. The objectives of this work were to document genetic variation in tolerance to water deficit during flowering and grain fil1ing among doubled haploid rice lines (DHL) from a japonica-by-indica cross, to identify genetic markers associated with performance, and to identify secondary traits that cosegregate with yield or yield components. In one season, staggered planting dates were used to synchronize flowering. In a second season, rice was grown using furrow irrigation and two periods of moderate water deficit were imposed in order to stress al1 entries at the most sensitive stage. In both seasons, stress treatments affected the percentage of sterile spikelets and the weight per grain. Quantitative trait loci (QTLs) were identified for yield components in each season and water level. A few QTLs had consistent effects across environments and/or seasons, but others were specific to the measurement environment. Across years, the QTLs identified for yield components under stress were not identified in the control, indicating that spil1-over effects are not adequate to exploit the genetic potential for yield under stress that is present in this population. On the other hand, the interval containing the sd1 gene appears to have a major effect on sterility, yield and harvest index under varied conditions. Some QTLs for yield components under stress co- segregated with reported QTLs for drought-adaptive traits such as root depth and thickness.

English

0101|AL-ABC Program|AGRIS 0101

Jose Juan Caballero

CIMMYT Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org