Knowledge Center Catalog

Performance and Mapping of Leaf Rust Resistance Transferred to Wheat from Triticum timopheevii subsp. armeniacum

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2003ISSN:
  • 0031-949X
In: Phytopathology v. 93, no. 7, p. 784-789Summary: Host plant resistance is an economical and environmentally sound method of control of leaf rust caused by the fungus Puccinia triticina, which is one of the most serious diseases of wheat (Triticum aestivum) worldwide. Wild relatives of wheat, including the tetraploid T. timopheevii subsp. armeniacum, represent an important source of genes for resistance to leaf rust. The objectives of this study were to (i) evaluate the performance of leaf rust resistance genes previously transferred to wheat from three accessions of T. timopheevii subsp. armeniacum, (ii) determine inheritance and allelic relationship of the new leaf rust resistance genes, and (iii) determine the genetic map location of one of the T. timopheevii subsp. armeniacum-derived genes using microsatellite markers. The leaf rust resistance gene transferred to hexaploid wheat from accession TA 28 of T. timopheevii subsp. armeniacum exhibited slightly different infection types (ITs) to diverse races of leaf rust in inoculated tests of seedlings compared with the gene transferred from TA 870 and TA 874. High ITs were exhibited when seedlings of all the germ plasm lines were inoculated with P. triticina races MBRL and PNMQ. However, low ITs were observed on adult plants of all lines having the T. timopheevii subsp. armeniacum-derived genes for resistance in the field at locations in Kansas and Texas. Analysis of crosses between resistant germ plasm lines showed that accessions TA 870 and TA 874 donated the same gene for resistance to leaf rust and TA 28 donated an independent resistance gene. The gene donated to germ plasm line KS96WGRC36 from TA 870 of T. timopheevii subsp. armeniacum was linked to microsatellite markers Xgwm382 (6.7 cM) and Xgdm87 (9.4 cM) on wheat chromosome arm 2B long. This new leaf rust resistance gene is designated Lr50. It is the first named gene for leaf rust resistance transferred from wild timopheevi wheat and is the only Lr gene located on the long arm of wheat homoeologous group 2 chromosomes.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes | http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0031-949X

Host plant resistance is an economical and environmentally sound method of control of leaf rust caused by the fungus Puccinia triticina, which is one of the most serious diseases of wheat (Triticum aestivum) worldwide. Wild relatives of wheat, including the tetraploid T. timopheevii subsp. armeniacum, represent an important source of genes for resistance to leaf rust. The objectives of this study were to (i) evaluate the performance of leaf rust resistance genes previously transferred to wheat from three accessions of T. timopheevii subsp. armeniacum, (ii) determine inheritance and allelic relationship of the new leaf rust resistance genes, and (iii) determine the genetic map location of one of the T. timopheevii subsp. armeniacum-derived genes using microsatellite markers. The leaf rust resistance gene transferred to hexaploid wheat from accession TA 28 of T. timopheevii subsp. armeniacum exhibited slightly different infection types (ITs) to diverse races of leaf rust in inoculated tests of seedlings compared with the gene transferred from TA 870 and TA 874. High ITs were exhibited when seedlings of all the germ plasm lines were inoculated with P. triticina races MBRL and PNMQ. However, low ITs were observed on adult plants of all lines having the T. timopheevii subsp. armeniacum-derived genes for resistance in the field at locations in Kansas and Texas. Analysis of crosses between resistant germ plasm lines showed that accessions TA 870 and TA 874 donated the same gene for resistance to leaf rust and TA 28 donated an independent resistance gene. The gene donated to germ plasm line KS96WGRC36 from TA 870 of T. timopheevii subsp. armeniacum was linked to microsatellite markers Xgwm382 (6.7 cM) and Xgdm87 (9.4 cM) on wheat chromosome arm 2B long. This new leaf rust resistance gene is designated Lr50. It is the first named gene for leaf rust resistance transferred from wild timopheevi wheat and is the only Lr gene located on the long arm of wheat homoeologous group 2 chromosomes.

Genetic Resources Program

English

No CIMMYT affiliation|APS

Carelia Juarez

INT3098

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org