Normal view MARC view ISBD view

DSSAT modelling of conservation agriculture maize response to climate change in Malawi

By: Ngwira, A.R.
Contributor(s): Aune, J.B [coaut.] | Thierfelder, C [coaut.].
Material type: materialTypeLabelArticlePublisher: 2014ISSN: 0167-1987.Subject(s): DSSAT | Maize yields | Risk averse farmers | Conservation agriculture | Climate change AGROVOC In: Soil and Tillage Research v. 143, p. 85-94Summary: Adoption of conservation agriculture (CA) is increasingly being promoted as a way of adapting agricultural systems to increasing climate variability, especially for areas such as southern Africa where rainfall is projected to decrease. The DSSAT crop simulation models can be a valuable tool in evaluating the effects of CA which are viable both economically and environmentally. Our objectives were: (1) to evaluate the ability of DSSAT to predict continuous maize (Zea mays L.) yield for conventional tillage (CT) and CA systems as well as maize yield for a CA maize?cowpea (Vigna unguiculata) rotation on an Oxic rhodustalf (2) to use DSSAT to project weather effect of climate change on yield, economic returns and risk in CT and CA systems. The DSSAT model was calibrated using data from 2007?2008 season and validated against independent data sets of yield of 2008?2009 to 2011?2012 seasons. Simulations of maize yields were conducted on projected future weather data from 2010 to 2030 that was generated by RegCM4 using the A1B scenario. The DSSAT model calibration and validation showed that it could be used for decision-making to choose specific CA practices especially for no-till and crop residue retention. Long term simulations showed that maize?cowpea rotation gave 451 kg ha−1 and 1.62 kg mm−1 rain more maize grain yield and rain water productivity, respectively compared with CT. On the other hand, CT (3131?5023 kg ha−1) showed larger variation in yield than both CA systems (3863 kg ha−1 and 4905 kg ha−1). CT and CA systems gave 50% and 10% cumulative probability of obtaining yield below the minimum acceptable limit of 4000 kg ha−1 respectively suggesting that CA has lower probability of low yield than CT, thus could be preferred by risk-averse farmers in uncertain climatic conditions. Using similar reasoning, Mean-Gini Dominance analysis showed the dominancy of maize?cowpea rotation and indicated it as the most efficient management system. This study therefore suggests that CA, especially when all three principles are practiced by smallholders in the medium altitude of Lilongwe and similar areas, has the potential to adapt the maize based systems to climate change. Use of DSSAT simulation of the effects of CA was successful for no-till and crop residue retention, but poor for crop rotation. Refinement of crop rotation algorithm in DSSAT is recommended.Collection: CIMMYT Staff Publications Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-7631 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0167-1987

Adoption of conservation agriculture (CA) is increasingly being promoted as a way of adapting agricultural systems to increasing climate variability, especially for areas such as southern Africa where rainfall is projected to decrease. The DSSAT crop simulation models can be a valuable tool in evaluating the effects of CA which are viable both economically and environmentally. Our objectives were: (1) to evaluate the ability of DSSAT to predict continuous maize (Zea mays L.) yield for conventional tillage (CT) and CA systems as well as maize yield for a CA maize?cowpea (Vigna unguiculata) rotation on an Oxic rhodustalf (2) to use DSSAT to project weather effect of climate change on yield, economic returns and risk in CT and CA systems. The DSSAT model was calibrated using data from 2007?2008 season and validated against independent data sets of yield of 2008?2009 to 2011?2012 seasons. Simulations of maize yields were conducted on projected future weather data from 2010 to 2030 that was generated by RegCM4 using the A1B scenario. The DSSAT model calibration and validation showed that it could be used for decision-making to choose specific CA practices especially for no-till and crop residue retention. Long term simulations showed that maize?cowpea rotation gave 451 kg ha−1 and 1.62 kg mm−1 rain more maize grain yield and rain water productivity, respectively compared with CT. On the other hand, CT (3131?5023 kg ha−1) showed larger variation in yield than both CA systems (3863 kg ha−1 and 4905 kg ha−1). CT and CA systems gave 50% and 10% cumulative probability of obtaining yield below the minimum acceptable limit of 4000 kg ha−1 respectively suggesting that CA has lower probability of low yield than CT, thus could be preferred by risk-averse farmers in uncertain climatic conditions. Using similar reasoning, Mean-Gini Dominance analysis showed the dominancy of maize?cowpea rotation and indicated it as the most efficient management system. This study therefore suggests that CA, especially when all three principles are practiced by smallholders in the medium altitude of Lilongwe and similar areas, has the potential to adapt the maize based systems to climate change. Use of DSSAT simulation of the effects of CA was successful for no-till and crop residue retention, but poor for crop rotation. Refinement of crop rotation algorithm in DSSAT is recommended.

Conservation Agriculture Program

English

CIMMYT Informa No. 1896|CSIRO

Lucia Segura

INT2939

CIMMYT Staff Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org