Normal view MARC view ISBD view

Improved wheat performance with seed treatments under dry sowing on permanent raised beds

By: Mulvaney, M.J.
Contributor(s): Herrera, J.M [coaut.] | Verhulst, N [coaut.] | Mezzalama, M [coaut.] | Govaerts, B [coaut.].
Material type: materialTypeLabelArticlePublisher: 2014ISSN: No (Revista en electrónico); 0378-4290.Subject(s): Crop enhancement | Pre-sowing irrigation | Thiamethoxam | Conservation agriculture In: Field Crops Research v. 164, p. 189-198Summary: Two strategies for seeding irrigation are used for irrigated wheat. Wet sowing utilizes pre-sowing irrigation to germinate weed seeds and thus control weeds, followed by sowing. Dry sowing plants into dry soil that is irrigated soon afterward, resulting in higher soil moisture during germination and emergence than wet sowing. Field observations have indicated reduced emergence, plant stands and yield in dry compared to wet sowing on a Vertisol in northwestern Mexico. This disadvantage is more acute when dry sowing is conducted in permanent beds with residue retention (conservation agriculture) compared to the conventional system involving tillage with residue incorporation. To identify the causes of reduced plant stand and yield and examine control options, chemical seed treatment effects on durum wheat (Triticum durum Desf.) and bread wheat (Triticum aestivum L.) performance under wet and dry sowing were investigated over three seasons in a permanent bed system. Four seed treatments were applied: Control (no seed treatment); Carboxin + thiram + chlorothalonil (Vit-Dac; fungicides); Difenoconazole + mefenoxam (Dif-Mef; fungicides); and Thiamethoxam + difenoconazole + mefenoxam (TMX-Dif-Mef; insecticide and fungicides). Plant stands, root rot scores, normalized difference vegetative index (NDVI), and grain yield were determined. Under dry sowing, Dif-Mef and TMX-Dif-Mef increased plant stands by 87% and 104%, respectively, compared to Vit-Dac, and by 152% and 172%, respectively, compared to the control. Under dry sowing, TMX-Dif-Mef increased yield by 9.76% and 17.7% compared to Vit-Dac and the control, respectively. Bread and durum wheat were significantly different for both emergence and yield every growing season. Seed treatments effects were not significant under wet sowing. Treatment differences were not linked with root rot incidence later in the season. Several mechanistic hypotheses to explain the results were explored. TMX has been reported to alter genetic expression to enhance response to early season abiotic stresses, but this has not been reported for Dif-Mef. The different physical conditions during stand establishment, i.e. increased moisture and reduced temperature, under dry sowing compared to wet sowing, could have affected microbial populations which induced biological suppression of germination and/or emergence. Although more research is required to explain the underlying mechanism, wheat producers transitioning to a dry sowing system under conservation agriculture with permanent raised beds may avoid yield loss by utilization of a Dif-Mef or TMX-Dif-Mef seed treatment.Collection: CIMMYT Staff Publications Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-7610 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0378-4290

Two strategies for seeding irrigation are used for irrigated wheat. Wet sowing utilizes pre-sowing irrigation to germinate weed seeds and thus control weeds, followed by sowing. Dry sowing plants into dry soil that is irrigated soon afterward, resulting in higher soil moisture during germination and emergence than wet sowing. Field observations have indicated reduced emergence, plant stands and yield in dry compared to wet sowing on a Vertisol in northwestern Mexico. This disadvantage is more acute when dry sowing is conducted in permanent beds with residue retention (conservation agriculture) compared to the conventional system involving tillage with residue incorporation. To identify the causes of reduced plant stand and yield and examine control options, chemical seed treatment effects on durum wheat (Triticum durum Desf.) and bread wheat (Triticum aestivum L.) performance under wet and dry sowing were investigated over three seasons in a permanent bed system. Four seed treatments were applied: Control (no seed treatment); Carboxin + thiram + chlorothalonil (Vit-Dac; fungicides); Difenoconazole + mefenoxam (Dif-Mef; fungicides); and Thiamethoxam + difenoconazole + mefenoxam (TMX-Dif-Mef; insecticide and fungicides). Plant stands, root rot scores, normalized difference vegetative index (NDVI), and grain yield were determined. Under dry sowing, Dif-Mef and TMX-Dif-Mef increased plant stands by 87% and 104%, respectively, compared to Vit-Dac, and by 152% and 172%, respectively, compared to the control. Under dry sowing, TMX-Dif-Mef increased yield by 9.76% and 17.7% compared to Vit-Dac and the control, respectively. Bread and durum wheat were significantly different for both emergence and yield every growing season. Seed treatments effects were not significant under wet sowing. Treatment differences were not linked with root rot incidence later in the season. Several mechanistic hypotheses to explain the results were explored. TMX has been reported to alter genetic expression to enhance response to early season abiotic stresses, but this has not been reported for Dif-Mef. The different physical conditions during stand establishment, i.e. increased moisture and reduced temperature, under dry sowing compared to wet sowing, could have affected microbial populations which induced biological suppression of germination and/or emergence. Although more research is required to explain the underlying mechanism, wheat producers transitioning to a dry sowing system under conservation agriculture with permanent raised beds may avoid yield loss by utilization of a Dif-Mef or TMX-Dif-Mef seed treatment.

Conservation Agriculture Program|Genetic Resources Program

English

CIMMYT Informa No. 1891

Lucia Segura

I1705009|INT3307|INT2602|INT2813

CIMMYT Staff Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org