Knowledge Center Catalog

Genotype X Environment Interaction|of Maize Grain Yield Using AMMI Biplots

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2014ISSN:
  • 1435-0653 (Revista en electrónico)
  • 0011-183X
In: Crop Science v. 54, no. 5, p. 1992-1999Summary: Maize (Zea mays) is the most important cereal crop in Zimbabwe and is grown by both large- and small-scale farmers who are located in different agro-ecological zones of the country. The development and dissemination of adapted and high-yielding maize cultivars to these agro-ecological zones involves conducting multi-environment trials (METs). This study was conducted with the objectives of i) understanding complex G × E interaction and stability of single cross hybrids generated using CIMMYT elite drought tolerant lines and Department of Research and Specialist Services (DR&SS) elite drought susceptible lines for grain yield across stress and nonstress environments and ii) to identify genotypes to recommend for further use in the breeding program. Initially, yield data of 80 maize single cross hybrids tested across seven environments during the 2009 to 2010 and 2010 to 2011 seasons were analyzed using the additive main effects and multiplicative interaction (AMMI) biplot method. The analysis was further done for 20 best performing genotypes to facilitate less congested graphical presentation. Combined analysis of variance showed highly significant differences for the G × E interaction, indicating the possibility of selection for stable genotypes. The five AMMI interaction principal component analyses (IPCAs; IPCA1, IPCA2, IPCA3, IPCA4, and IPCA5) explained 82.41% of the variation and they were highly significant. The results showed three genotypes with high yield performance and broad adaptability whilst narrow adaptations were also observed. Agricultural Research Trust Farm was the most powerful site in discriminating among genotypes and the most representative environment.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

Maize (Zea mays) is the most important cereal crop in Zimbabwe and is grown by both large- and small-scale farmers who are located in different agro-ecological zones of the country. The development and dissemination of adapted and high-yielding maize cultivars to these agro-ecological zones involves conducting multi-environment trials (METs). This study was conducted with the objectives of i) understanding complex G × E interaction and stability of single cross hybrids generated using CIMMYT elite drought tolerant lines and Department of Research and Specialist Services (DR&SS) elite drought susceptible lines for grain yield across stress and nonstress environments and ii) to identify genotypes to recommend for further use in the breeding program. Initially, yield data of 80 maize single cross hybrids tested across seven environments during the 2009 to 2010 and 2010 to 2011 seasons were analyzed using the additive main effects and multiplicative interaction (AMMI) biplot method. The analysis was further done for 20 best performing genotypes to facilitate less congested graphical presentation. Combined analysis of variance showed highly significant differences for the G × E interaction, indicating the possibility of selection for stable genotypes. The five AMMI interaction principal component analyses (IPCAs; IPCA1, IPCA2, IPCA3, IPCA4, and IPCA5) explained 82.41% of the variation and they were highly significant. The results showed three genotypes with high yield performance and broad adaptability whilst narrow adaptations were also observed. Agricultural Research Trust Farm was the most powerful site in discriminating among genotypes and the most representative environment.

Global Maize Program

English

CIMMYT Informa No. 1889

Lucia Segura

INT2714|INT2636

CIMMYT Staff Publications Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org