Knowledge Center Catalog

Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2013ISSN:
  • 1525-3163 (Revista en electrónico)
  • 0021-8812
Subject(s): In: Journal of Animal Science v. 91, no. 8, p. 3522-3531Summary: In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees or both. These models include, among others, the Bayesian Regularized Neural Networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R brnn package described here implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0021-8812

In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees or both. These models include, among others, the Bayesian Regularized Neural Networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R brnn package described here implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.

Genetic Resources Program

English

Lucia Segura

CCJL01

CIMMYT Staff Publications Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org