Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding
Material type: ArticleLanguage: En Publication details: 2013ISSN:- 1525-3163 (Revista en electrónico)
- 0021-8812
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | Available |
Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0021-8812
In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees or both. These models include, among others, the Bayesian Regularized Neural Networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R brnn package described here implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.
Genetic Resources Program
English
Lucia Segura
CCJL01
CIMMYT Staff Publications Collection