Knowledge Center Catalog

Combining abilities of maize inbred lines for grey leaf spot (GLS), grain yield and selected agronomic traits in Kenya

By: Contributor(s): Material type: ArticleArticlePublication details: 2013ISSN:
  • No (Revista en electrónico)
  • 2006-9758
Subject(s): In: Journal of Plant Breeding and Crop Science v. 5, no. 3, p. 41-47Summary: The genetics of resistance to grey leaf spot (GLS) disease, grain yield and selected agronomic traits was studied in 42 F1 progenies from a full diallel cross among seven maize inbred lines. These 42 F1 progenies and seven parents were evaluated at three locations; Kenya Agricultural Research Institute (KARI), Kiboko, KARI Kakamega and University of Nairobi (Field station) during the period June 2006 to April 2008. The experiments were laid out in a randomized complete block design with three replicates. Combining ability analyses were conducted on the across site data of grey leaf spot disease, grain yield and selected agronomic traits using Griffing?s method one, model one in the SAS program. Additive gene action played a greater role than non-additive gene action in the inheritance of resistance to grey leaf spot disease whereas the non additive effects were more important in the inheritance of grain yield. Reciprocal effects were not significant for GLS disease resistance and grain yield indicating absence of maternal effects for these traits. The inbred lines, CML 384 and CML 373 were the best combiners for grain yield with general combining ability (GCA) effects of 0.79 and 0.56 respectively while TZMI 711 and CML 373 were the best combiners for GLS resistance with highest negative values for GCA of -0.51 and -0.398, respectively. The local maize breeders could now incorporate the genes for GLS resistance in CML 373 and TZMI 711 and the grain yield genes in CML 384 into elite lines using recurrent and backcross methods, respectively in order to increase maize production and productivity in Kenya.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer-review: No - Open Access: Yes|http://www.academicjournals.org/journal/JPBCS/editorial-policies#4.1_Peer_review

The genetics of resistance to grey leaf spot (GLS) disease, grain yield and selected agronomic traits was studied in 42 F1 progenies from a full diallel cross among seven maize inbred lines. These 42 F1 progenies and seven parents were evaluated at three locations; Kenya Agricultural Research Institute (KARI), Kiboko, KARI Kakamega and University of Nairobi (Field station) during the period June 2006 to April 2008. The experiments were laid out in a randomized complete block design with three replicates. Combining ability analyses were conducted on the across site data of grey leaf spot disease, grain yield and selected agronomic traits using Griffing?s method one, model one in the SAS program. Additive gene action played a greater role than non-additive gene action in the inheritance of resistance to grey leaf spot disease whereas the non additive effects were more important in the inheritance of grain yield. Reciprocal effects were not significant for GLS disease resistance and grain yield indicating absence of maternal effects for these traits. The inbred lines, CML 384 and CML 373 were the best combiners for grain yield with general combining ability (GCA) effects of 0.79 and 0.56 respectively while TZMI 711 and CML 373 were the best combiners for GLS resistance with highest negative values for GCA of -0.51 and -0.398, respectively. The local maize breeders could now incorporate the genes for GLS resistance in CML 373 and TZMI 711 and the grain yield genes in CML 384 into elite lines using recurrent and backcross methods, respectively in order to increase maize production and productivity in Kenya.

Global Maize Program

English

No CIMMYT affiliation

Lucia Segura

INT3343

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org