Normal view MARC view ISBD view

Studies of the genetics of inheritance of stem rust resistance in bread wheat

By: Nzuve, F. M.
Contributor(s): Njau, P. N [coaut.] | Tusiime, G [coaut.] | Wanyera, R [coaut.] | Bhavani, S [coaut.].
Material type: materialTypeLabelArticlePublisher: 2013ISSN: No (Revista en electrónico); 1684-5315.Subject(s): gene | Genetic | Resistance | Wheat In: African Journal of Biotechnology v. 12, no. 21, p. 3153-3159Summary: Pgt race TTKSK (Ug99) has a wide virulence range with respect to currently grown wheat cultivars worldwide. Aspects of migration, mutation, recombination and selection in the pathogen have led to previously deployed stem rust resistance genes being ineffective. Race TTKSK has further evolved to acquire virulence for resistance genes such as Sr24 (race Ug99 + Sr24) and Sr36 (Ug99 + Sr36). Five resistant wheat lines (KSL-2, KSL-3, KSL-5, KSL-12 and KSL-19) which were resistant in tests during 2008, 2009 and 2010 were used as parents in crosses with stem rust susceptible line CACUKE to develop genetic populations for determining the inheritance of resistance to stem rust. F3 populations were evaluated at KARI Njoro in the 2012 off season and 2012 to 2013 main season. The adult plant stem rust responses were scored using the modified Cobb?s scale. The F2:3 lines of population(s) exhibiting qualitative variation were grouped as homozygous resistant (HR), segregating (Seg) and homozygous susceptible (HS). Heavy disease pressure was present during the cropping seasons with the check CACUKE displaying 90% susceptibility. Chi square analysis revealed that the segregation data in the parent KSL-2 did not deviate significantly from the single gene model (1:2:1) suggesting that the resistance to stem rust is conditioned by a single dominant gene. The Chi square test also revealed that the stem rust resistance in the parents KSL-3, KSL-5, KSL-12 and KSL-19 was conditioned by two genes. The families from the KSL-2 and KSL-3 crosses also segregated for the presence of the pseudo black chaff implying that theSr2 gene could be present in the background of these wheat parents. The superior transgressive segregants identified in these crosses will be used in breeding.Collection: CIMMYT Staff Publications Collection
List(s) this item appears in: Ug99
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-7354 (Browse shelf) Available
Total holds: 0

Peer-review: No - Open Access: Yes|http://www.ajol.info/index.php/ajb

Pgt race TTKSK (Ug99) has a wide virulence range with respect to currently grown wheat cultivars worldwide. Aspects of migration, mutation, recombination and selection in the pathogen have led to previously deployed stem rust resistance genes being ineffective. Race TTKSK has further evolved to acquire virulence for resistance genes such as Sr24 (race Ug99 + Sr24) and Sr36 (Ug99 + Sr36). Five resistant wheat lines (KSL-2, KSL-3, KSL-5, KSL-12 and KSL-19) which were resistant in tests during 2008, 2009 and 2010 were used as parents in crosses with stem rust susceptible line CACUKE to develop genetic populations for determining the inheritance of resistance to stem rust. F3 populations were evaluated at KARI Njoro in the 2012 off season and 2012 to 2013 main season. The adult plant stem rust responses were scored using the modified Cobb?s scale. The F2:3 lines of population(s) exhibiting qualitative variation were grouped as homozygous resistant (HR), segregating (Seg) and homozygous susceptible (HS). Heavy disease pressure was present during the cropping seasons with the check CACUKE displaying 90% susceptibility. Chi square analysis revealed that the segregation data in the parent KSL-2 did not deviate significantly from the single gene model (1:2:1) suggesting that the resistance to stem rust is conditioned by a single dominant gene. The Chi square test also revealed that the stem rust resistance in the parents KSL-3, KSL-5, KSL-12 and KSL-19 was conditioned by two genes. The families from the KSL-2 and KSL-3 crosses also segregated for the presence of the pseudo black chaff implying that theSr2 gene could be present in the background of these wheat parents. The superior transgressive segregants identified in these crosses will be used in breeding.

Global Wheat Program

English

CIMMYT Informa No. 1866| Academic Journals

Lucia Segura

INT2843

CIMMYT Staff Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org