Knowledge Center Catalog

Local cover image
Local cover image

Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Amsterdam (Netherlands) : Elsevier, 2013.ISSN:
  • 0167-8809
Subject(s): Online resources: In: Agriculture, Ecosystems and Environment v. 117, p. 85-97Summary: Increasing scarcity of resources (labour, water, and energy) and cost of production, along with climate variability, are major challenges for the sustainability of rice?wheat system in the northwesten Indo-Gangetic Plains (IGP). We hypothesized that adopting the principles of conservation agriculture together with best crop management practices would improve system productivity and overall efficiency, resulting in a higher profitability. To test this hypothesis, we evaluated the performance of four cropping system scenarios (treatments), which were designed to be adapted to current and future drivers of agricultural changes. The treatments including farmers practices varied in tillage and crop establishment methods, residue management, crop sequence, and crop management. Zero-tillage direct-seeded rice (ZT-DSR) with residue retention and best management practices provided equivalent or higher yield and 30?50% lower irrigation water use than those of farmer-managed puddled transplanted rice (CT-TPR). Overall, net economic returns increased up to 79% with a net reduction in production cost of up to US$ 55 ha−1 in ZT-DSR than CT-TPR. Substituting rice with ZT maize was equally profitable but with 88?95% less irrigation water use. Avoiding puddling in rice and dry tillage in maize with residue retention increased yield (by 0.5?1.2 t ha−1) and net economic returns of the succeeding wheat crop. Inclusion of mungbean in the rotation further increased system productivity and economic returns. In summary, our initial results of 2-year field study showed positive effects of CA-based improved management practices on yield and system efficiencies with greater benefits in the second year. There is a need of longer term monitoring to quantify cumulative effects of various interventions and to eventually make recommendations for wider dissemination.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-7205 (Browse shelf(Opens below)) Available
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://www.sciencepublishinggroup.com/journal/peerreviewers.aspx?journalid=119|Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0167-8809

Increasing scarcity of resources (labour, water, and energy) and cost of production, along with climate variability, are major challenges for the sustainability of rice?wheat system in the northwesten Indo-Gangetic Plains (IGP). We hypothesized that adopting the principles of conservation agriculture together with best crop management practices would improve system productivity and overall efficiency, resulting in a higher profitability. To test this hypothesis, we evaluated the performance of four cropping system scenarios (treatments), which were designed to be adapted to current and future drivers of agricultural changes. The treatments including farmers practices varied in tillage and crop establishment methods, residue management, crop sequence, and crop management. Zero-tillage direct-seeded rice (ZT-DSR) with residue retention and best management practices provided equivalent or higher yield and 30?50% lower irrigation water use than those of farmer-managed puddled transplanted rice (CT-TPR). Overall, net economic returns increased up to 79% with a net reduction in production cost of up to US$ 55 ha−1 in ZT-DSR than CT-TPR. Substituting rice with ZT maize was equally profitable but with 88?95% less irrigation water use. Avoiding puddling in rice and dry tillage in maize with residue retention increased yield (by 0.5?1.2 t ha−1) and net economic returns of the succeeding wheat crop. Inclusion of mungbean in the rotation further increased system productivity and economic returns. In summary, our initial results of 2-year field study showed positive effects of CA-based improved management practices on yield and system efficiencies with greater benefits in the second year. There is a need of longer term monitoring to quantify cumulative effects of various interventions and to eventually make recommendations for wider dissemination.

Conservation Agriculture Program

Text in English

CIMMYT Informa No. 1853|Elsevier|No CIMMYT affiliation (Gathala, M.K.)

I1705444|INT3072|INT3262

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org