Spatial analysis to support geographic targeting of genotypes to environments
Material type: ArticlePublication details: 2013ISSN:- 1664-042X
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | CIS-7165 (Browse shelf(Opens below)) | Available |
Browsing CIMMYT Knowledge Center: John Woolston Library shelves, Collection: CIMMYT Staff Publications Collection Close shelf browser (Hides shelf browser)
Peer-review: No - Open Access: Yes|http://www.frontiersin.org/Physiology/reviewguidelines#FrontiersFullReview
Peer review
Open Access
Crop improvement efforts have benefited greatly from advances in available data, computing technology, and methods for targeting genotypes to environments. These advances support the analysis of genotype by environment interactions (GEI) to understand how well a genotype adapts to environmental conditions. This paper reviews the use of spatial analysis to support crop improvement research aimed at matching genotypes to their most appropriate environmental niches. Better data sets are now available on soils, weather and climate, elevation, vegetation, crop distribution, and local conditions where genotypes are tested in experimental trial sites. The improved data are now combined with spatial analysis methods to compare environmental conditions across sites, create agro-ecological region maps, and assess environment change. Climate, elevation, and vegetation data sets are now widely available, supporting analyses that were much more difficult even 5 or 10 years ago. While detailed soil data for many parts of the world remains difficult to acquire for crop improvement studies, new advances in digital soil mapping are likely to improve our capacity. Site analysis and matching and regional targeting methods have advanced in parallel to data and technology improvements. All these developments have increased our capacity to link genotype to phenotype and point to a vast potential to improve crop adaptation efforts.
Maize CRP FP1 - Sustainable intensification of maize-based farming systems
Wheat CRP FP1 - Maximizing value for money, social inclusivity through prioritizing WHEAT R4D investments
Socioeconomics Program
English
CIMMYT Informa No. 1843
INT2550
CIMMYT Staff Publications Collection