Normal view MARC view ISBD view

Molecular mapping of genes for Coleoptile growth in bread wheat (Triticum aestivum L.)

By: Rebetzke, G.J.
Contributor(s): Ellis, M.H [coaut.] | Richards, R.A [coaut.] | Bonnett, D.G [coaut.].
Material type: materialTypeLabelArticlePublisher: 2007ISSN: 1432-2242 (Revista en electrónico); 0040-5752. In: Theoretical and Applied Genetics v. 114, no. 7, p. 1173-1183Summary: Successful plant establishment is critical to the development of high-yielding crops. Short coleoptiles can reduce seedling emergence particularly when seed is sown deep as occurs when moisture necessary for germination is deep in the subsoil. Detailed molecular maps for a range of wheat doubled-haploid populations (Cranbrook/Halberd, Sunco/Tasman, CD87/Katepwa and Kukri/Janz) were used to identify genomic regions affecting coleoptile characteristics length, cross-sectional area and degree of spiralling across contrasting soil temperatures. Genotypic variation was large and distributions of genotype means were approximately normal with evidence for transgressive segregation. Narrow-sense heritabilities were high for coleoptile length and cross-sectional area indicating a strong genetic basis for differences among progeny. In contrast, heritabilities for coleoptile spiralling were small. Molecular marker analyses identified a number of significant quantitative trait loci (QTL) for coleoptile growth. Many of the coleoptile growth QTL mapped directly to the Rht-B1 or Rht-D1 dwarfing gene loci conferring reduced cell size through insensitivity to endogenous gibberellins. Other QTL for coleoptile growth were identified throughout the genome. Epistatic interactions were small or non-existent, and there was little evidence for any QTL × temperature interaction. Gene effects at significant QTL were approximately one-half to one-quarter the size of effects at the Rht-B1 and Rht-D1 regions. However, selection at these QTL could together alter coleoptile length by up to 50 mm. In addition to Rht-B1b and Rht-D1b, genomic regions on chromosomes 2B, 2D, 4A, 5D and 6B were repeatable across two or more populations suggesting their potential value for use in breeding and marker-aided selection for greater coleoptile length and improved establishment.Collection: Reprints Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

Reprints Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0040-5752

Successful plant establishment is critical to the development of high-yielding crops. Short coleoptiles can reduce seedling emergence particularly when seed is sown deep as occurs when moisture necessary for germination is deep in the subsoil. Detailed molecular maps for a range of wheat doubled-haploid populations (Cranbrook/Halberd, Sunco/Tasman, CD87/Katepwa and Kukri/Janz) were used to identify genomic regions affecting coleoptile characteristics length, cross-sectional area and degree of spiralling across contrasting soil temperatures. Genotypic variation was large and distributions of genotype means were approximately normal with evidence for transgressive segregation. Narrow-sense heritabilities were high for coleoptile length and cross-sectional area indicating a strong genetic basis for differences among progeny. In contrast, heritabilities for coleoptile spiralling were small. Molecular marker analyses identified a number of significant quantitative trait loci (QTL) for coleoptile growth. Many of the coleoptile growth QTL mapped directly to the Rht-B1 or Rht-D1 dwarfing gene loci conferring reduced cell size through insensitivity to endogenous gibberellins. Other QTL for coleoptile growth were identified throughout the genome. Epistatic interactions were small or non-existent, and there was little evidence for any QTL × temperature interaction. Gene effects at significant QTL were approximately one-half to one-quarter the size of effects at the Rht-B1 and Rht-D1 regions. However, selection at these QTL could together alter coleoptile length by up to 50 mm. In addition to Rht-B1b and Rht-D1b, genomic regions on chromosomes 2B, 2D, 4A, 5D and 6B were repeatable across two or more populations suggesting their potential value for use in breeding and marker-aided selection for greater coleoptile length and improved establishment.

Global Wheat Program

English

No CIMMYT affiliation|Springer

Lucia Segura

INT2902

Reprints Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org