Normal view MARC view ISBD view

Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines

By: Long-Xi Yu.
Contributor(s): Anderson, J.A [coaut.] | Brown-Guidera, G [coaut.] | Dubcovsky, J [coaut.] | Sixin Liu [coaut.] | Sorrells, M.E [coaut.] | Yue Jin [coaut.] | Huerta-Espino, J [coaut.] | Singh, R.P [coaut.] | He Zhonghu [coaut.] | Bhavani, S [coaut.] | Morgounov, A.I [coaut.].
Material type: materialTypeLabelArticlePublisher: 2010ISSN: 1572-9788 (Revista en electrónico); 1380-3743.Subject(s): Genetic relationship | Haplotype | marker-assisted selection | pyramiding | Sr gene | Stem rustOnline resources: Access only for CIMMYT Staff In: Molecular Breeding v. 26, no. 4, p. 667-680Summary: Stem rust is one of the most destructive diseases of wheat worldwide. The recent emergence of wheat stem rust race Ug99 (TTKS based on the North American stem rust race nomenclature system) and related strains threaten global wheat production because they overcome widely used genes that had been effective for many years. Host resistance is likely to be more durable when several stem rust resistance genes are pyramided in a single wheat variety; however, little is known about the resistance genotypes of widely used wheat germplasm. In this study, a diverse collection of wheat germplasm was haplotyped for stem rust resistance genes Sr2, Sr22, Sr24, Sr25, Sr26, Sr36, Sr40, and 1A.1R using linked microsatellite or simple sequence repeat (SSR) and sequence tagged site (STS) markers. Haplotype analysis indicated that 83 out of 115 current wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) likely carry Sr2. Among those, five out of 94 CIMMYT spring lines tested had both Sr2 and Sr25 haplotypes. Five out of 22 Agriculture Research Service (ARS) lines likely have Sr2 and a few have Sr24, Sr36, and 1A.1R. Two out of 43 Chinese accessions have Sr2. No line was found to have the Sr26 and Sr40 haplotypes in this panel of accessions. DArT genotyping was used to identify new markers associated with the major stem resistance genes. Four DArT markers were significantly associated with Sr2 and one with Sr25. Principal component analysis grouped wheat lines from similar origins. Almost all CIMMYT spring wheats were clustered together as a large group and separated from the winter wheats. The results provide useful information for stem rust resistance breeding and pyramiding.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-7011 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1380-3743

Stem rust is one of the most destructive diseases of wheat worldwide. The recent emergence of wheat stem rust race Ug99 (TTKS based on the North American stem rust race nomenclature system) and related strains threaten global wheat production because they overcome widely used genes that had been effective for many years. Host resistance is likely to be more durable when several stem rust resistance genes are pyramided in a single wheat variety; however, little is known about the resistance genotypes of widely used wheat germplasm. In this study, a diverse collection of wheat germplasm was haplotyped for stem rust resistance genes Sr2, Sr22, Sr24, Sr25, Sr26, Sr36, Sr40, and 1A.1R using linked microsatellite or simple sequence repeat (SSR) and sequence tagged site (STS) markers. Haplotype analysis indicated that 83 out of 115 current wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) likely carry Sr2. Among those, five out of 94 CIMMYT spring lines tested had both Sr2 and Sr25 haplotypes. Five out of 22 Agriculture Research Service (ARS) lines likely have Sr2 and a few have Sr24, Sr36, and 1A.1R. Two out of 43 Chinese accessions have Sr2. No line was found to have the Sr26 and Sr40 haplotypes in this panel of accessions. DArT genotyping was used to identify new markers associated with the major stem resistance genes. Four DArT markers were significantly associated with Sr2 and one with Sr25. Principal component analysis grouped wheat lines from similar origins. Almost all CIMMYT spring wheats were clustered together as a large group and separated from the winter wheats. The results provide useful information for stem rust resistance breeding and pyramiding.

Global Wheat Program

English

INT0610|INT2843|INT1787|INT2411

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org