Knowledge Center Catalog

Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2007Subject(s): In: European Journal of Agronomy v. 27, no. 2-4, p. 165-177Summary: In recent years, maize has become one of the main alternative crops for the Autumn-Winter growing season (off-season) in several regions of Brazil. Water deficits, sub-optimum temperatures and low solar radiation levels are some of the more common problems that are experienced during this growing season. However, the impact of variable weather conditions on crop production can be analyzed with crop simulation models. The objectives of this study were to evaluate the Cropping System Model (CSM)-CERES-Maize for its ability to simulate growth, development, grain yield for four different maturity maize hybrids grown off-season in a subtropical region of Brazil, to study the impact of different planting dates on maize performance under rainfed and irrigated conditions, and for yield forecasting for the most common off-season production system. The CSM-CERES-Maize model was evaluated with experimental data collected during three field experiments conducted in Piracicaba, SP, Brazil. The experiments were completely randomized with three replications for the 2001 experiment and four replications for the 2002 experiments. For the yield forecasting application, daily weather data for 2002 were used until the forecast date, complemented with 25 years of historical daily weather data for the remainder of the growing season. Six planting dates were simulated, starting on February 1 and repeated every 15 days until April 15. The evaluation of the CSM-CERES-Maize showed that the model was able to simulate phenology and grain yield for the four hybrids accurately, with normalized RMSE (expressed in percentage) less than 15%. The planting date analysis showed that a delayed planting date from February 1 to April 15 caused a decrease in average yield of 55% for the rainfed and 21% for the irrigated conditions for all hybrids. The yield forecasting analysis demonstrated that an accurate yield forecast could be provided at approximately 45 days prior to the harvest date for all four maize hybrids. These results are promising for farmers and decision makers, as they could have access to accurate yield forecasts prior to final harvest. However, to be able to make practical decisions for stock management of maize grains, it is necessary to develop this methodology for different locations. Future model evaluations might also be needed due to the release of new cultivars by breeders.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1161-0301

In recent years, maize has become one of the main alternative crops for the Autumn-Winter growing season (off-season) in several regions of Brazil. Water deficits, sub-optimum temperatures and low solar radiation levels are some of the more common problems that are experienced during this growing season. However, the impact of variable weather conditions on crop production can be analyzed with crop simulation models. The objectives of this study were to evaluate the Cropping System Model (CSM)-CERES-Maize for its ability to simulate growth, development, grain yield for four different maturity maize hybrids grown off-season in a subtropical region of Brazil, to study the impact of different planting dates on maize performance under rainfed and irrigated conditions, and for yield forecasting for the most common off-season production system. The CSM-CERES-Maize model was evaluated with experimental data collected during three field experiments conducted in Piracicaba, SP, Brazil. The experiments were completely randomized with three replications for the 2001 experiment and four replications for the 2002 experiments. For the yield forecasting application, daily weather data for 2002 were used until the forecast date, complemented with 25 years of historical daily weather data for the remainder of the growing season. Six planting dates were simulated, starting on February 1 and repeated every 15 days until April 15. The evaluation of the CSM-CERES-Maize showed that the model was able to simulate phenology and grain yield for the four hybrids accurately, with normalized RMSE (expressed in percentage) less than 15%. The planting date analysis showed that a delayed planting date from February 1 to April 15 caused a decrease in average yield of 55% for the rainfed and 21% for the irrigated conditions for all hybrids. The yield forecasting analysis demonstrated that an accurate yield forecast could be provided at approximately 45 days prior to the harvest date for all four maize hybrids. These results are promising for farmers and decision makers, as they could have access to accurate yield forecasts prior to final harvest. However, to be able to make practical decisions for stock management of maize grains, it is necessary to develop this methodology for different locations. Future model evaluations might also be needed due to the release of new cultivars by breeders.

English

Elsevier

Carelia Juarez

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org