Normal view MARC view ISBD view

QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64

By: Yan Ren.
Contributor(s): Bin Bai [coaut.] | Cuifen Wang [coaut.] | Gang Zhou [coaut.] | Huazhong Zhu [coaut.] | Ling Wu [coaut.] | Xianchun Xia [coaut.] | Zaifeng Li [coaut.] | He Zhonghu [coaut.] | Caixia Lan [coaut.].
Material type: materialTypeLabelArticlePublisher: 2012ISSN: 1432-2242 (Revista en electrónico); 0040-5752. In: Theoretical and Applied Genetics v. 125, no. 6, p. 1253-1262Summary: Stripe rust and leaf rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. and P. triticina, respectively, are devastating fungal diseases of common wheat (Triticum aestivum L.). Chinese wheat cultivar Bainong 64 has maintained acceptable adult-plant resistance (APR) to stripe rust, leaf rust and powdery mildew for more than 10 years. The aim of this study was to identify quantitative trait loci/locus (QTL) for resistance to the two rusts in a population of 179 doubled haploid (DH) lines derived from Bainong 64 × Jingshuang 16. The DH lines were planted in randomized complete blocks with three replicates at four locations. Stripe rust tests were conducted using a mixture of currently prevalent P. striiformis races, and leaf rust tests were performed with P. triticina race THTT. Leaf rust severities were scored two or three times, whereas maximum disease severities (MDS) were recorded for stripe rust. Using bulked segregant analysis (BSA) and simple sequence repeat (SSR) markers, five independent loci for APR to two rusts were detected. The QTL on chromosomes 1BL and 6BS contributed by Bainong 64 conferred resistance to both diseases. The loci identified on chromosomes 7AS and 4DL had minor effects on stripe rust response, whereas another locus, close to the centromere on chromosome 6BS, had a significant effect only on leaf rust response. The loci located on chromosomes 1BL and 4DL also had significant effects on powdery mildew response. These were located at the same positions as the Yr29/Lr46 and Yr46/Lr67 genes, respectively. The multiple disease resistance locus for APR on chromosome 6BS appears to be new. All three genes and their closely linked molecular markers could be used in breeding wheat cultivars with durable resistance to multiple diseases.Collection: CIMMYT Staff Publications Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-6822 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0040-5752

Stripe rust and leaf rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. and P. triticina, respectively, are devastating fungal diseases of common wheat (Triticum aestivum L.). Chinese wheat cultivar Bainong 64 has maintained acceptable adult-plant resistance (APR) to stripe rust, leaf rust and powdery mildew for more than 10 years. The aim of this study was to identify quantitative trait loci/locus (QTL) for resistance to the two rusts in a population of 179 doubled haploid (DH) lines derived from Bainong 64 × Jingshuang 16. The DH lines were planted in randomized complete blocks with three replicates at four locations. Stripe rust tests were conducted using a mixture of currently prevalent P. striiformis races, and leaf rust tests were performed with P. triticina race THTT. Leaf rust severities were scored two or three times, whereas maximum disease severities (MDS) were recorded for stripe rust. Using bulked segregant analysis (BSA) and simple sequence repeat (SSR) markers, five independent loci for APR to two rusts were detected. The QTL on chromosomes 1BL and 6BS contributed by Bainong 64 conferred resistance to both diseases. The loci identified on chromosomes 7AS and 4DL had minor effects on stripe rust response, whereas another locus, close to the centromere on chromosome 6BS, had a significant effect only on leaf rust response. The loci located on chromosomes 1BL and 4DL also had significant effects on powdery mildew response. These were located at the same positions as the Yr29/Lr46 and Yr46/Lr67 genes, respectively. The multiple disease resistance locus for APR on chromosome 6BS appears to be new. All three genes and their closely linked molecular markers could be used in breeding wheat cultivars with durable resistance to multiple diseases.

Global Wheat Program

English

CIMMYT Informa No. 1808|Springer

Lucia Segura

INT2411|INT3206

CIMMYT Staff Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org