Normal view MARC view ISBD view

Crop yield gaps: their importance, magnitudes, and causes

By: Lobell, D.B.
Contributor(s): Cassman, K.G [coaut.] | Field, C.B [coaut.].
Material type: materialTypeLabelArticlePublisher: 2009Subject(s): Agriculture | Climate uncertainty | Food production | Yield constraints | yield potential In: Annual Review of Environmental Resources v. 34, p. 179-204Summary: Future trajectories of food prices, food security, and cropland expansion are closely linked to future average crop yields in the major agricultural regions of the world. Because the maximum possible yields achieved in farmers' fields might level off or even decline in many regions over the next few decades, reducing the gap between average and potential yields is critical. In most major irrigated wheat, rice, and maize systems, yields appear to be at or near 80% of yield potential, with no evidence for yields having exceeded this threshold to date. A fundamental constraint in these systems appears to be uncertainty in growing season weather; thus tools to address this uncertainty would likely reduce gaps. Otherwise, short-term prospects for yield gains in irrigated agriculture appear grim without increased yield potential. Average yields in rainfed systems are commonly 50% or less of yield potential, suggesting ample room for improvement, though estimation of yield gaps for rainfed regions is subject to more errors than for irrigated regions. Several priorities for future research are identified.Collection: Reprints Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

Reprints Collection Available
Total holds: 0

Future trajectories of food prices, food security, and cropland expansion are closely linked to future average crop yields in the major agricultural regions of the world. Because the maximum possible yields achieved in farmers' fields might level off or even decline in many regions over the next few decades, reducing the gap between average and potential yields is critical. In most major irrigated wheat, rice, and maize systems, yields appear to be at or near 80% of yield potential, with no evidence for yields having exceeded this threshold to date. A fundamental constraint in these systems appears to be uncertainty in growing season weather; thus tools to address this uncertainty would likely reduce gaps. Otherwise, short-term prospects for yield gains in irrigated agriculture appear grim without increased yield potential. Average yields in rainfed systems are commonly 50% or less of yield potential, suggesting ample room for improvement, though estimation of yield gaps for rainfed regions is subject to more errors than for irrigated regions. Several priorities for future research are identified.

English

Carelia Juarez

Reprints Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org