Knowledge Center Catalog

Local cover image
Local cover image

Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : CSSA : Wiley, 2012.ISSN:
  • 1435-0653 (Online)
  • 0011-183X
Subject(s): Online resources: In: Crop Science v. 52, no. 2, p. 707-719Summary: Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (?newly? developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-6767 (Browse shelf(Opens below)) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X

Peer review

Open Access

Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (?newly? developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confirmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefit greatly from using multienvironment GS models.

Genetic Resources Program

Text in English

CIMMYT Informa No. 1807|Crop Science Society of America (CSSA)

INT3239|CCJL01

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org