Normal view MARC view ISBD view

Microsatellite mapping identifies TTKST-effective stem rust resistance gene in wheat cultivars VL404 and Janz

By: Bansal, U.K.
Contributor(s): Bariana, H.S [coaut.] | Gupta, V [coaut.] | Wanyera, R [coaut.] | Zwart, R [coaut.] | Bhavani, S [coaut.].
Material type: materialTypeLabelArticlePublisher: 2012ISSN: 1572-9788 (Revista en electrónico); 1380-3743.Subject(s): Disease resistance | Markers | Stem rust | Ug99 | Wheat In: Molecular Breeding v. 30, no. 4, p. 1757-1765Summary: Wheat cultivar VL404 carries seedling resistance to Puccinia graminis f. sp. tritici pathotype TTKST. Monogenic segregation for seedling resistance was observed in a VL404/WL711 recombinant inbred line population and the resistance locus was temporarily designated SrVL. Bulked segregant analysis using Diversity Arrays Technology markers located SrVL on chromosome 2BL. Detailed simple sequence repeat mapping placed SrVL between gwm120 and wmc175, both at genetic distances of 3.3 cM. Based on adult plant responses of Janz and VL404 in India and Kenya, we expected these cultivars to carry the same gene against TTKST. A subset of Diamondbird/Janz doubled haploid (DH) population showed monogenic segregation, when tested against TTKST and the locus was temporarily named SrJNZ. SrVL-linked markers gwm120 and wmc175 flanked SrJNZ at a similar genetic distance, thereby confirming our hypothesis. Chromosome 2BL carries Sr9, Sr16 and Sr28. Sr9 is a multi-allelic locus and all known alleles of Sr9 and Sr16 are ineffective against TTKSK and its derivatives. A recombination value of 16.7 cM between Sr9g-linked stripe rust resistance gene Yr7 and SrJNZ in Diamondbird/Janz DH population suggested that SrJNZ is not an allele at the Sr9 locus. Based on comparison of published genetic distances between Lr13, Sr9, Sr28 and Sr16 with that observed in this study, we concluded SrVL and SrJNZ to be Sr28. This gene was contributed by a common parent Gabo, which also exhibited resistance against TTKST. Sr28-linked markers gwm120 and wmc175 confirmed the presence of this gene in a high proportion of Australian cultivars that showed stem rust resistance in Kenya. These markers can be used for marker-assisted pyramiding of Sr28 with other stem rust resistance genes.Collection: CIMMYT Staff Publications Collection
List(s) this item appears in: Ug99
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-6762 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1380-3743

Wheat cultivar VL404 carries seedling resistance to Puccinia graminis f. sp. tritici pathotype TTKST. Monogenic segregation for seedling resistance was observed in a VL404/WL711 recombinant inbred line population and the resistance locus was temporarily designated SrVL. Bulked segregant analysis using Diversity Arrays Technology markers located SrVL on chromosome 2BL. Detailed simple sequence repeat mapping placed SrVL between gwm120 and wmc175, both at genetic distances of 3.3 cM. Based on adult plant responses of Janz and VL404 in India and Kenya, we expected these cultivars to carry the same gene against TTKST. A subset of Diamondbird/Janz doubled haploid (DH) population showed monogenic segregation, when tested against TTKST and the locus was temporarily named SrJNZ. SrVL-linked markers gwm120 and wmc175 flanked SrJNZ at a similar genetic distance, thereby confirming our hypothesis. Chromosome 2BL carries Sr9, Sr16 and Sr28. Sr9 is a multi-allelic locus and all known alleles of Sr9 and Sr16 are ineffective against TTKSK and its derivatives. A recombination value of 16.7 cM between Sr9g-linked stripe rust resistance gene Yr7 and SrJNZ in Diamondbird/Janz DH population suggested that SrJNZ is not an allele at the Sr9 locus. Based on comparison of published genetic distances between Lr13, Sr9, Sr28 and Sr16 with that observed in this study, we concluded SrVL and SrJNZ to be Sr28. This gene was contributed by a common parent Gabo, which also exhibited resistance against TTKST. Sr28-linked markers gwm120 and wmc175 confirmed the presence of this gene in a high proportion of Australian cultivars that showed stem rust resistance in Kenya. These markers can be used for marker-assisted pyramiding of Sr28 with other stem rust resistance genes.

Global Wheat Program

English

CIMMYT Informa No. 1805

Lucia Segura

INT2843

CIMMYT Staff Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org