Knowledge Center Catalog

Local cover image
Local cover image

Whole-genome strategies for marker-assisted plant breeding

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Dordrecht (Netherlands) : Springer, 2012.ISSN:
  • 1572-9788 (Online)
  • 1380-3743
Subject(s): Online resources: In: Molecular Breeding v. 29, no. 4, p. 833-854Summary: Molecular breeding for complex traits in crop plants requires understanding and manipulation of many factors influencing plant growth, development and responses to an array of biotic and abiotic stresses. Molecular marker-assisted breeding procedures can be facilitated and revolutionized through whole-genome strategies, which utilize full genome sequencing and genome-wide molecular markers to effectively address various genomic and environmental factors through a representative or complete set of genetic resources and breeding materials. These strategies are now increasingly based on understanding of specific genomic regions, genes/alleles, haplotypes, linkage disequilibrium (LD) block(s), gene networks and their contribution to specific phenotypes. Large-scale and high-density genotyping and genome-wide selection are two important components of these strategies. As components of whole-genome strategies, molecular breeding platforms and methodologies should be backed up by high throughput and precision phenotyping and e-typing (environmental assay) with strong support systems such as breeding informatics and decision support tools. Some basic strategies are discussed in this article, including (1) seed DNA-based genotyping for simplifying marker-assisted selection (MAS), reducing breeding cost and increasing scale and efficiency, (2) selective genotyping and phenotyping, combined with pooled DNA analysis, for capturing the most important contributing factors, (3) flexible genotyping systems, such as genotyping by sequencing and arraying, refined for different selection methods including MAS, marker-assisted recurrent selection and genomic selection (GS), (4) marker-trait association analysis using joint linkage and LD mapping, and (5) sequence-based strategies for marker development, allele mining, gene discovery and molecular breeding.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1380-3743

Molecular breeding for complex traits in crop plants requires understanding and manipulation of many factors influencing plant growth, development and responses to an array of biotic and abiotic stresses. Molecular marker-assisted breeding procedures can be facilitated and revolutionized through whole-genome strategies, which utilize full genome sequencing and genome-wide molecular markers to effectively address various genomic and environmental factors through a representative or complete set of genetic resources and breeding materials. These strategies are now increasingly based on understanding of specific genomic regions, genes/alleles, haplotypes, linkage disequilibrium (LD) block(s), gene networks and their contribution to specific phenotypes. Large-scale and high-density genotyping and genome-wide selection are two important components of these strategies. As components of whole-genome strategies, molecular breeding platforms and methodologies should be backed up by high throughput and precision phenotyping and e-typing (environmental assay) with strong support systems such as breeding informatics and decision support tools. Some basic strategies are discussed in this article, including (1) seed DNA-based genotyping for simplifying marker-assisted selection (MAS), reducing breeding cost and increasing scale and efficiency, (2) selective genotyping and phenotyping, combined with pooled DNA analysis, for capturing the most important contributing factors, (3) flexible genotyping systems, such as genotyping by sequencing and arraying, refined for different selection methods including MAS, marker-assisted recurrent selection and genomic selection (GS), (4) marker-trait association analysis using joint linkage and LD mapping, and (5) sequence-based strategies for marker development, allele mining, gene discovery and molecular breeding.

Global Maize Program

Text in English

CIMMYT Informa No. 1783

INT2735|INT3057

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org