Knowledge Center Catalog

Local cover image
Local cover image

Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Amsterdam (Netherlands) : Elsevier, 2011.ISSN:
  • 0378-4290
Subject(s): Online resources: In: Field Crops Research v. 122, no. 3, p. 225-233Summary: Knowledge of the changes in agronomic and photosynthetic traits associated with genetic gains in grain yield potential is essential for an improved understanding of yield-limiting factors and for determining future breeding strategies. The objectives of this study were to identify agronomic and photosynthetic traits associated with genetic gains in grain yield of facultative wheat (Triticum aestivum L.) between 1981 and 2008 in Henan Province, the most important wheat producing area in China. During the 2006–2007 and 2007–2008 crop seasons, a yield potential trial comprising 18 leading and new cultivars released between 1981 and 2008 was conducted at two locations, using a completely randomised block design of three replicates. Results showed that average annual genetic gain in grain yield was 0.60% or 51.30 kg ha−1 yr−1, and the significant genetic improvement in grain yield was directly attributed to increased thousand grain weight which also contributed to the significant increase in harvest index. The genetic gains in rates of net photosynthesis at 10, 20 and 30 days after anthesis were 1.10% (R2 = 0.46, P < 0.01), 0.68% (R2 = 0.31, P < 0.05) and 6.77% (R2 = 0.34, P < 0.05), respectively. The rates of net photosynthesis at 10 (r = 0.58, P < 0.05), 20 (r = 0.59, P < 0.05) and 30 (r = 0.65, P < 0.01) days after anthesis were closely and positively correlated with grain yield. A slight decrease in leaf temperature and an increase in stomatal conductance after anthesis were also observed. Grain yield was closely and positively associated with stomatal conductance (r = 0.69, P < 0.01) and transpiration rate (r = 0.63, P < 0.01) at 30 days after anthesis. Therefore, improvement of those traits was the likely basis of increasing grain yield in Henan Province between 1981 and 2008. The genetic improvement in yield was primarily attributed to the utilization of two elite parents Yumai 2 and Zhou 8425B. The future challenge of wheat breeding in this region is to maintain the genetic gain in grain yield and to improve grain quality, without increasing inputs for the wheat–maize double cropping system.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0378-4290

Knowledge of the changes in agronomic and photosynthetic traits associated with genetic gains in grain yield potential is essential for an improved understanding of yield-limiting factors and for determining future breeding strategies. The objectives of this study were to identify agronomic and photosynthetic traits associated with genetic gains in grain yield of facultative wheat (Triticum aestivum L.) between 1981 and 2008 in Henan Province, the most important wheat producing area in China. During the 2006–2007 and 2007–2008 crop seasons, a yield potential trial comprising 18 leading and new cultivars released between 1981 and 2008 was conducted at two locations, using a completely randomised block design of three replicates. Results showed that average annual genetic gain in grain yield was 0.60% or 51.30 kg ha−1 yr−1, and the significant genetic improvement in grain yield was directly attributed to increased thousand grain weight which also contributed to the significant increase in harvest index. The genetic gains in rates of net photosynthesis at 10, 20 and 30 days after anthesis were 1.10% (R2 = 0.46, P < 0.01), 0.68% (R2 = 0.31, P < 0.05) and 6.77% (R2 = 0.34, P < 0.05), respectively. The rates of net photosynthesis at 10 (r = 0.58, P < 0.05), 20 (r = 0.59, P < 0.05) and 30 (r = 0.65, P < 0.01) days after anthesis were closely and positively correlated with grain yield. A slight decrease in leaf temperature and an increase in stomatal conductance after anthesis were also observed. Grain yield was closely and positively associated with stomatal conductance (r = 0.69, P < 0.01) and transpiration rate (r = 0.63, P < 0.01) at 30 days after anthesis. Therefore, improvement of those traits was the likely basis of increasing grain yield in Henan Province between 1981 and 2008. The genetic improvement in yield was primarily attributed to the utilization of two elite parents Yumai 2 and Zhou 8425B. The future challenge of wheat breeding in this region is to maintain the genetic gain in grain yield and to improve grain quality, without increasing inputs for the wheat–maize double cropping system.

Global Wheat Program

Text in English

Elsevier

INT2411

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org