Knowledge Center Catalog

Local cover image
Local cover image

Simulation of resource-conserving technologies on productivity, income and greenhouse gas GHG emission in rice-wheat system

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Nigeria : Academic Journals, 2012.ISSN:
  • 2141-2391
Subject(s): Online resources: In: Journal of Soil Science and Environmental Management v. 3, no. 1, p. 9-22Summary: The Rice-wheat (RW) cropping system is one of the major agricultural production systems in four Indo-Gangetic Plains (IGP) countries: India, Pakistan, Bangladesh and Nepal of South Asia covering about 32% of the total rice area and 42% of the total wheat area. The excessive utilization of natural resource bases and changing climate are leading to the negative yield trend and plateauing of Rice-wheat (RW) system productivity. The conservation agriculture based efficient and environmental friendly alternative tillage and crop establishment practices have been adopted by the farmers on large scale. A few tools have been evolved to simulate the different tillage and crop establishment. In the present study, InfoRCT (Information on Use of Resource Conserving Technologies), a excel based model integrating biophysical, agronomic, and socioeconomic data to establish input-output relationships related to water, fertilizer, labor, and biocide uses; greenhouse gas (GHG) emissions; biocide residue in soil; and Nitrogen (N) fluxes in the rice-wheat system has been validated for farmer participatory practices. The assessment showed that double no-till system increased the farmer?s income, whereas raised-bed systems decreased it compared with the conventional system. The InfoRCT simulated the yield, wateruse, net income and biocide residue fairly well. The model has potential to provide assessments of various cultural practices under different scenarios of soil, climate, and crop management on a regional scale
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer-review: No - Open Access: Yes|http://www.academicjournals.org/journal/JSSEM/about

Peer review

Open Access

The Rice-wheat (RW) cropping system is one of the major agricultural production systems in four Indo-Gangetic Plains (IGP) countries: India, Pakistan, Bangladesh and Nepal of South Asia covering about 32% of the total rice area and 42% of the total wheat area. The excessive utilization of natural resource bases and changing climate are leading to the negative yield trend and plateauing of Rice-wheat (RW) system productivity. The conservation agriculture based efficient and environmental friendly alternative tillage and crop establishment practices have been adopted by the farmers on large scale. A few tools have been evolved to simulate the different tillage and crop establishment. In the present study, InfoRCT (Information on Use of Resource Conserving Technologies), a excel based model integrating biophysical, agronomic, and socioeconomic data to establish input-output relationships related to water, fertilizer, labor, and biocide uses; greenhouse gas (GHG) emissions; biocide residue in soil; and Nitrogen (N) fluxes in the rice-wheat system has been validated for farmer participatory practices. The assessment showed that double no-till system increased the farmer?s income, whereas raised-bed systems decreased it compared with the conventional system. The InfoRCT simulated the yield, wateruse, net income and biocide residue fairly well. The model has potential to provide assessments of various cultural practices under different scenarios of soil, climate, and crop management on a regional scale

Conservation Agriculture Program

Text in English

INT3262|INT3072

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org