Knowledge Center Catalog

Local cover image
Local cover image

Genetic analysis of water use efficiency in rice (Oryza sativa L.) at the leaf level

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: USA : Springer, 2010.ISSN:
  • 1939-8425
  • 1939-8433 (Online)
Subject(s): Online resources: In: Rice v. 3, no. 1, p. 72-86Summary: Carbon isotope discrimination (∆13C) is considered as an index of leaf-level water use efficiency, an important objective for plant breeders seeking to conserve water resources. We report in rice a genetic analysis for ∆13C, leaf structural parameters, gas exchange, stomatal conductance, and leaf abscisic acid (ABA) concentrations. Doubled haploid and recombinant inbred populations, both derived from the cross IR64 × Azucena, were used for quantitative trait locus (QTL) analysis following greenhouse experiments. ∆13C QTLs on the long arms of chromosomes 4 and 5 were colocalized with QTLs associated with leaf blade width, length, and flatness, while a QTL cluster for ∆13C, photosynthesis parameters, and ABA was observed in the near-centromeric region of chromosome 4. These results are consistent with phenotypic correlations and suggest that genetic variation in carbon assimilation and stomatal conductance contribute to the genetic variation for ∆13C in this population.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-6239 (Browse shelf(Opens below)) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1939-8425

Peer review

Open Access

Carbon isotope discrimination (∆13C) is considered as an index of leaf-level water use efficiency, an important objective for plant breeders seeking to conserve water resources. We report in rice a genetic analysis for ∆13C, leaf structural parameters, gas exchange, stomatal conductance, and leaf abscisic acid (ABA) concentrations. Doubled haploid and recombinant inbred populations, both derived from the cross IR64 × Azucena, were used for quantitative trait locus (QTL) analysis following greenhouse experiments. ∆13C QTLs on the long arms of chromosomes 4 and 5 were colocalized with QTLs associated with leaf blade width, length, and flatness, while a QTL cluster for ∆13C, photosynthesis parameters, and ABA was observed in the near-centromeric region of chromosome 4. These results are consistent with phenotypic correlations and suggest that genetic variation in carbon assimilation and stomatal conductance contribute to the genetic variation for ∆13C in this population.

Global Maize Program

Text in English

INT2735

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org