Knowledge Center Catalog

Local cover image
Local cover image

Statistical genomics for crop improvement : opportunities and challenges

By: Material type: ArticleArticleLanguage: English Publication details: India : Indian Society of Agricultural Statistics, 2010.ISSN:
  • 0019-6363
Subject(s): Online resources: In: Journal of the Indian Society of Agricultural Statistics v. 64, no. 1, p. 77-87Summary: Effective analysis of molecular data in combination with rigorous phenotypic data using appropriate statistical methods can provide enhanced understanding of the genetic and molecular bases of complex phenotypic traits. Coupled with the rapid development related to genome sequencing of crop plants, advances in statistical methods have aided in detecting Quantitative Trait Loci (QTL) influencing an array of traits, including epistatic QTLs, besides analysis of genotype x environment interactions, discovery of 'consensus QTL' through meta-analysis of data, expression-QTL (eQTL) through genetical genomics, and even epigenomic QTL. The profusion of powerful DNA-based markers, particularly single nucleotide polymorphisms (SNPs) and the evolution of statistical algorithms and experimental strategies, including the extension of the concept of linkage disequilibrium (LD)-based association mapping in crop plants, further promises to revolutionize the discovery of marker-trait associations for several important traits. While these exciting advances have brought closer the statisticians, bioinformatics experts, geneticists and molecular biologists, the new focus on genomiscs has also highlighted a significant challenge; how to integrate the different views of the genome given by various types of experimental data and provide a proper biological perspective that can lead to crop improvement. In the article, from the user's perspective, I shall review some of the ongoing work on the above-mentioned areas in crop plants, especially using maize as a model system, and the opportunities and challenges for application of statistical genomics in molecular plant breeding.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: No - Open Access: Yes|http://www.isas.org.in/html/journal.html

Effective analysis of molecular data in combination with rigorous phenotypic data using appropriate statistical methods can provide enhanced understanding of the genetic and molecular bases of complex phenotypic traits. Coupled with the rapid development related to genome sequencing of crop plants, advances in statistical methods have aided in detecting Quantitative Trait Loci (QTL) influencing an array of traits, including epistatic QTLs, besides analysis of genotype x environment interactions, discovery of 'consensus QTL' through meta-analysis of data, expression-QTL (eQTL) through genetical genomics, and even epigenomic QTL. The profusion of powerful DNA-based markers, particularly single nucleotide polymorphisms (SNPs) and the evolution of statistical algorithms and experimental strategies, including the extension of the concept of linkage disequilibrium (LD)-based association mapping in crop plants, further promises to revolutionize the discovery of marker-trait associations for several important traits. While these exciting advances have brought closer the statisticians, bioinformatics experts, geneticists and molecular biologists, the new focus on genomiscs has also highlighted a significant challenge; how to integrate the different views of the genome given by various types of experimental data and provide a proper biological perspective that can lead to crop improvement. In the article, from the user's perspective, I shall review some of the ongoing work on the above-mentioned areas in crop plants, especially using maize as a model system, and the opportunities and challenges for application of statistical genomics in molecular plant breeding.

Global Maize Program

Text in English

INT3057

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org