Knowledge Center Catalog

Local cover image
Local cover image

Linear, bilinear, and linear-bilinear fixed and mixed models for analyzing genotype × environment interaction in plant breeding and agronomy

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Ontario (Canada) : Agricultural Institute of Canada, 2010.ISSN:
  • 1918-1833 (Online)
  • 0008-4220
Subject(s): Online resources: In: Canadian Journal of Plant Science v. 90, no. 5, p. 561-574Summary: The purpose of this manuscript is to review various statistical models for analyzing genotype × environment interaction (GE). The objective is to present parsimonious approaches other than the standard analysis of variance of the two-way effect model. Some fixed effects linear-bilinear models such as the sites regression model (SREG) are discussed, and a mixed effects counterpart such as the factorial analytic (FA) model is explained. The role of these linear-bilinear models for assessing crossover interaction (COI) is explained. One class of linear models, namely factorial regression (FR) models, and one class of bilinear models, namely partial least squares (PLS) regression, allows incorporating external environmental and genotypic covariables directly into the model. Examples illustrating the use of various statistical models for analyzing GE in the context of plant breeding and agronomy are given.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0008-4220

The purpose of this manuscript is to review various statistical models for analyzing genotype × environment interaction (GE). The objective is to present parsimonious approaches other than the standard analysis of variance of the two-way effect model. Some fixed effects linear-bilinear models such as the sites regression model (SREG) are discussed, and a mixed effects counterpart such as the factorial analytic (FA) model is explained. The role of these linear-bilinear models for assessing crossover interaction (COI) is explained. One class of linear models, namely factorial regression (FR) models, and one class of bilinear models, namely partial least squares (PLS) regression, allows incorporating external environmental and genotypic covariables directly into the model. Examples illustrating the use of various statistical models for analyzing GE in the context of plant breeding and agronomy are given.

Genetic Resources Program|Global Wheat Program

Text in English

INT2917|CCJL01

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org