Knowledge Center Catalog

Genomic selection in plant breeding: From theory to practice

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2010Subject(s): In: Briefings in Functional Genomics v. 9, no. 2, p. 166-177Summary: We intuitively believe that the dramatic drop in the cost of DNA marker information we have experienced should have immediate benefits in accelerating the delivery of crop varieties with improved yield, quality and biotic and abiotic stress tolerance. But these traits are complex and affected by many genes, each with small effect. Traditional marker-assisted selection has been ineffective for such traits. The introduction of genomic selection(GS), however, has shifted that paradigm. Rather than seeking to identify individual loci significantly associated with a trait,GS uses all marker data as predictors of performance and consequently delivers more accurate predictions. Selection can be based on GS predictions, potentially leading to more rapid and lower cost gains from breeding. The objectives of this article are to review essential aspects of GS and summarize the important take-home messages from recent theoretical, simulation and empirical studies.We then look forward and consider research needs surrounding methodological questions and the implications of GS for long-term selection.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

We intuitively believe that the dramatic drop in the cost of DNA marker information we have experienced should have immediate benefits in accelerating the delivery of crop varieties with improved yield, quality and biotic and abiotic stress tolerance. But these traits are complex and affected by many genes, each with small effect. Traditional marker-assisted selection has been ineffective for such traits. The introduction of genomic selection(GS), however, has shifted that paradigm. Rather than seeking to identify individual loci significantly associated with a trait,GS uses all marker data as predictors of performance and consequently delivers more accurate predictions. Selection can be based on GS predictions, potentially leading to more rapid and lower cost gains from breeding. The objectives of this article are to review essential aspects of GS and summarize the important take-home messages from recent theoretical, simulation and empirical studies.We then look forward and consider research needs surrounding methodological questions and the implications of GS for long-term selection.

English

Berta Trujillo

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org