Normal view MARC view ISBD view

Nitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan Africa

By: Chikowo, R.
Contributor(s): CORBEELS, M | GILLER, K.E | Mapfumo, P [coaut.] | Tittonell, P | Vanlauwe, B.
Material type: materialTypeLabelArticlePublisher: 2010ISSN: 1385-1314.Subject(s): Cropping systems modeling | Fertilizers | Legumes AGROVOC | Manure | Nutrient mining | Nutrient use efficiency | Sub-Saharan Africa In: Nutrient Cycling in Agroecosystems v. 88, no. 1, p. 59-77Summary: This paper examines a number of agronomic field experiments in different regions of sub-Saharan Africa to assess the associated variability in the efficiencies with which applied and available nutrients are taken up by crops under a wide range of management and environmental conditions. We consider N and P capture efficiencies (NCE and PCE, kg uptake kg−1 nutrient availability), and N and P recovery efficiencies (NRE and PRE, kg uptake kg−1 nutrient added). The analyzed cropping systems employed different soil fertility management practices that included (1) N and P mineral fertilizers (as sole or their combinations) (2) cattle manure composted then applied or applied directly to fields through animal corralling, and legume based systems separated into (3) improved fallows/cover crops-cereal sequences, and (4) grain legume-cereal rotations. Crop responses to added nutrients varied widely, which is a logical consequence of the wide diversity in the balance of production resources across regions from arid through wet tropics, coupled with an equally large array of management practices and inter-season variability. The NCE ranged from 0.05 to 0.98 kg kg−1 for the different systems (NP fertilizers, 0.16?0.98; fallow/cover crops, 0.05?0.75; animal manure, 0.10?0.74 kg kg−1), while PCE ranged from 0.09 to 0.71 kg kg−1, depending on soil conditions. The respective NREs averaged 0.38, 0.23 and 0.25 kg kg−1. Cases were found where NREs were >1 for mineral fertilizers or negative when poor quality manure immobilized soil N, while response to P was in many cases poor due to P fixation by soils. Other than good agronomy, it was apparent that flexible systems of fertilization that vary N input according to the current seasonal rainfall pattern offer opportunities for high resource capture and recovery efficiencies in semi-arid areas. We suggest the use of cropping systems modeling approaches to hasten the understanding of Africa?s complex cropping systems.Collection: CIMMYT Staff Publications Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-6049 (Browse shelf) Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1385-1314

This paper examines a number of agronomic field experiments in different regions of sub-Saharan Africa to assess the associated variability in the efficiencies with which applied and available nutrients are taken up by crops under a wide range of management and environmental conditions. We consider N and P capture efficiencies (NCE and PCE, kg uptake kg−1 nutrient availability), and N and P recovery efficiencies (NRE and PRE, kg uptake kg−1 nutrient added). The analyzed cropping systems employed different soil fertility management practices that included (1) N and P mineral fertilizers (as sole or their combinations) (2) cattle manure composted then applied or applied directly to fields through animal corralling, and legume based systems separated into (3) improved fallows/cover crops-cereal sequences, and (4) grain legume-cereal rotations. Crop responses to added nutrients varied widely, which is a logical consequence of the wide diversity in the balance of production resources across regions from arid through wet tropics, coupled with an equally large array of management practices and inter-season variability. The NCE ranged from 0.05 to 0.98 kg kg−1 for the different systems (NP fertilizers, 0.16?0.98; fallow/cover crops, 0.05?0.75; animal manure, 0.10?0.74 kg kg−1), while PCE ranged from 0.09 to 0.71 kg kg−1, depending on soil conditions. The respective NREs averaged 0.38, 0.23 and 0.25 kg kg−1. Cases were found where NREs were >1 for mineral fertilizers or negative when poor quality manure immobilized soil N, while response to P was in many cases poor due to P fixation by soils. Other than good agronomy, it was apparent that flexible systems of fertilization that vary N input according to the current seasonal rainfall pattern offer opportunities for high resource capture and recovery efficiencies in semi-arid areas. We suggest the use of cropping systems modeling approaches to hasten the understanding of Africa?s complex cropping systems.

Conservation Agriculture Program

English

Springer

Lucia Segura

INT2737

CIMMYT Staff Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org